Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with PyTorch

You're reading from   Deep Learning with PyTorch A practical approach to building neural network models using PyTorch

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788624336
Length 262 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vishnu Subramanian Vishnu Subramanian
Author Profile Icon Vishnu Subramanian
Vishnu Subramanian
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Deep Learning Using PyTorch 2. Building Blocks of Neural Networks FREE CHAPTER 3. Diving Deep into Neural Networks 4. Fundamentals of Machine Learning 5. Deep Learning for Computer Vision 6. Deep Learning with Sequence Data and Text 7. Generative Networks 8. Modern Network Architectures 9. What Next? 10. Other Books You May Enjoy

To get the most out of this book

All the chapters (except Chapter 1, Getting Started with Deep Learning Using PyTorch and Chapter 9, What Next) have associated Jupyter Notebooks in the book's GitHub repository. The imports required for the code to run may not be included in the text to save space. You should be able to run all of the code from the Notebooks.

The book focuses on practical illustrations, so run the Jupyter Notebooks as you read the chapters.

Access to a computer with a GPU will help run the code quickly. There are companies such as paperspace.com and www.crestle.com that abstract a lot of the complexity required to run deep learning algorithms.

Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at www.packtpub.com.
  2. Select the SUPPORT tab.
  3. Click on Code Downloads & Errata.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Deep-Learning-with-PyTorch. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The custom class has to implement two main functions, namely __len__(self) and __getitem__(self, idx)."

A block of code is set as follows:

x,y = get_data() # x - represents training data,y -                 represents target variables

w,b = get_weights() # w,b - Learnable parameters

for i in range(500):
y_pred = simple_network(x) # function which computes wx + b
loss = loss_fn(y,y_pred) # calculates sum of the squared differences of y and y_pred

if i % 50 == 0:
print(loss)
optimize(learning_rate) # Adjust w,b to minimize the loss

Any command-line input or output is written as follows:

conda install pytorch torchvision cuda80 -c soumith

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.
Tips and tricks appear like this.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image