Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R

You're reading from   Mastering Predictive Analytics with R Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts

Arrow left icon
Product type Paperback
Published in Jun 2015
Publisher
ISBN-13 9781783982806
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (13) Chapters Close

Preface 1. Gearing Up for Predictive Modeling 2. Linear Regression FREE CHAPTER 3. Logistic Regression 4. Neural Networks 5. Support Vector Machines 6. Tree-based Methods 7. Ensemble Methods 8. Probabilistic Graphical Models 9. Time Series Analysis 10. Topic Modeling 11. Recommendation Systems Index

Stationary time series models


In this section, we will describe a few stationary time series models. As we will see, these can be used to model a number of real-world processes.

Moving average models

A moving average (MA) process is a stochastic process in which the random variable at time step t is a linear combination of the most recent (in time) terms of a white noise process. Concretely, we can write this in an equation as follows:

In the previous equation, and henceforth, we will assume that the e terms are white noise random variables with mean 0 and variance σw2. We can describe a moving average process in an equivalent way by making use of the backshift operator, B. The backshift operator is an operator that when applied to a random variable in a stochastic process at time t, produces the random variable at the previous time step, t-1. For example:

We can obtain random variables further back in time by successive applications of the backshift operator. B2, for example, indicates the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image