Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Refactoring with C++

You're reading from   Refactoring with C++ Explore modern ways of developing maintainable and efficient applications

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781837633777
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Mr. Dmitry Danilov Mr. Dmitry Danilov
Author Profile Icon Mr. Dmitry Danilov
Mr. Dmitry Danilov
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Chapter 1: Coding Standards in C++ 2. Chapter 2: Main Software Development Principles FREE CHAPTER 3. Chapter 3: Causes of Bad Code 4. Chapter 4: Identifying Ideal Candidates for Rewriting – Patterns and Anti-Patterns 5. Chapter 5: The Significance of Naming 6. Chapter 6: Utilizing a Rich Static Type System in C++ 7. Chapter 7: Classes, Objects, and OOP in C++ 8. Chapter 8: Designing and Developing APIs in C++ 9. Chapter 9: Code Formatting and Naming Conventions 10. Chapter 10: Introduction to Static Analysis in C++ 11. Chapter 11: Dynamic Analysis 12. Chapter 12: Testing 13. Chapter 13: Modern Approach to Managing Third Parties 14. Chapter 14: Version Control 15. Chapter 15: Code Review 16. Index 17. Other Books You May Enjoy

Legacy code

Refactoring legacy C++ code is a significant undertaking that has the potential to breathe new life into an aging code base. Often, legacy code is written in old dialects of C++, such as C++98 or C++03, which do not take advantage of the new language features and standard library improvements introduced in C++11, C++14, C++17, and C++20.

One common area for modernization is memory management. Legacy C++ code often uses raw pointers for managing dynamic memory, leading to potential issues with memory leaks and null pointer dereferencing. Such code can be refactored to use smart pointers, such as std::unique_ptr and std::shared_ptr, which automatically manage the lifetime of the objects they point to, reducing the risk of memory leaks.

Another modernization opportunity lies in adopting the range-based for loops introduced in C++11. Older loops with explicit iterators or index variables can be replaced with cleaner and more intuitive range-based loops. This not only...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image