Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow 1.x Deep Learning Cookbook

You're reading from   TensorFlow 1.x Deep Learning Cookbook Over 90 unique recipes to solve artificial-intelligence driven problems with Python

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781788293594
Length 536 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. TensorFlow - An Introduction 2. Regression FREE CHAPTER 3. Neural Networks - Perceptron 4. Convolutional Neural Networks 5. Advanced Convolutional Neural Networks 6. Recurrent Neural Networks 7. Unsupervised Learning 8. Autoencoders 9. Reinforcement Learning 10. Mobile Computation 11. Generative Models and CapsNet 12. Distributed TensorFlow and Cloud Deep Learning 13. Learning to Learn with AutoML (Meta-Learning) 14. TensorFlow Processing Units

Answering questions about images (Visual Q&A)

In this recipe, we will learn how to answer questions about the content of a specific image. This is a powerful form of Visual Q&A based on a combination of visual features extracted from a pre-trained VGG16 model together with word clustering (embedding). These two sets of heterogeneous features are then combined into a single network where the last layers are made up of an alternating sequence of Dense and Dropout. This recipe works on Keras 2.0+.

Therefore, this recipe will teach you how to:

  • Extract features from a pre-trained VGG16 network.
  • Use pre-built word embeddings for mapping words into a space where similar words are adjacent.
  • Use LSTM layers for building a language model. LSTM will be discussed in Chapter 6 and for now we will use them as black boxes.
  • Combine different heterogeneous input features to create a combined...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image