Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
TensorFlow Machine Learning Cookbook
TensorFlow Machine Learning Cookbook

TensorFlow Machine Learning Cookbook: Over 60 practical recipes to help you master Google's TensorFlow machine learning library

eBook
€24.99 €36.99
Paperback
€45.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

TensorFlow Machine Learning Cookbook

Chapter 1. Getting Started with TensorFlow

In this chapter, we will cover basic recipes in order to understand how TensorFlow works and how to access data for this book and additional resources. By the end of the chapter, you should have knowledge of the following:

  • How TensorFlow Works
  • Declaring Variables and Tensors
  • Using Placeholders and Variables
  • Working with Matrices
  • Declaring Operations
  • Implementing Activation Functions
  • Working with Data Sources
  • Additional Resources

Introduction

Google's TensorFlow engine has a unique way of solving problems. This unique way allows us to solve machine learning problems very efficiently. Machine learning is used in almost all areas of life and work, but some of the more famous areas are computer vision, speech recognition, language translations, and healthcare. We will cover the basic steps to understand how TensorFlow operates and eventually build up to production code techniques later in the book. These fundamentals are important in order to understand the recipes in the rest of this book.

How TensorFlow Works

At first, computation in TensorFlow may seem needlessly complicated. But there is a reason for it: because of how TensorFlow treats computation, developing more complicated algorithms is relatively easy. This recipe will guide us through the pseudocode of a TensorFlow algorithm.

Getting ready

Currently, TensorFlow is supported on Linux, Mac, and Windows. The code for this book has been created and run on a Linux system, but should run on any other system as well. The code for the book is available on GitHub at https://github.com/nfmcclure/tensorflow_cookbookTensorFlow. Throughout this book, we will only concern ourselves with the Python library wrapper of TensorFlow, although most of the original core code for TensorFlow is written in C++. This book will use Python 3.4+ (https://www.python.org) and TensorFlow 0.12 (https://www.tensorflow.org). TensorFlow has a 1.0.0 alpha version available on the official GitHub site, and the code in this book has been reviewed to be compatible with that version as well. While TensorFlow can run on the CPU, most algorithms run faster if processed on the GPU, and it is supported on graphics cards with Nvidia Compute Capability v4.0+ (v5.1 recommended). Popular GPUs for TensorFlow are Nvidia Tesla architectures and Pascal architectures with at least 4 GB of video RAM. To run on a GPU, you will also need to download and install the Nvidia Cuda Toolkit and also v 5.x + (https://developer.nvidia.com/cuda-downloads). Some of the recipes will rely on a current installation of the Python packages: Scipy, Numpy, and Scikit-Learn. These accompanying packages are also all included in the Anaconda package (https://www.continuum.io/downloads).

How to do it…

Here we will introduce the general flow of TensorFlow algorithms. Most recipes will follow this outline:

  1. Import or generate datasets: All of our machine-learning algorithms will depend on datasets. In this book, we will either generate data or use an outside source of datasets. Sometimes it is better to rely on generated data because we will just want to know the expected outcome. Most of the time, we will access public datasets for the given recipe and the details on accessing these are given in section 8 of this chapter.
  2. Transform and normalize data: Normally, input datasets do not come in the shape TensorFlow would expect so we need to transform TensorFlow them to the accepted shape. The data is usually not in the correct dimension or type that our algorithms expect. We will have to transform our data before we can use it. Most algorithms also expect normalized data and we will do this here as well. TensorFlow has built-in functions that can normalize the data for you as follows:
    data = tf.nn.batch_norm_with_global_normalization(...)
  3. Partition datasets into train, test, and validation sets: We generally want to test our algorithms on different sets that we have trained on. Also, many algorithms require hyperparameter tuning, so we set aside a validation set for determining the best set of hyperparameters.
  4. Set algorithm parameters (hyperparameters): Our algorithms usually have a set of parameters that we hold constant throughout the procedure. For example, this can be the number of iterations, the learning rate, or other fixed parameters of our choosing. It is considered good form to initialize these together so the reader or user can easily find them, as follows:
    learning_rate = 0.01
    batch_size = 100
    iterations = 1000
  5. Initialize variables and placeholders: TensorFlow depends on knowing what it can and cannot modify. TensorFlow will modify/adjust the variables and weight/bias during optimization to minimize a loss function. To accomplish this, we feed in data through placeholders. We need to initialize both of these variables and placeholders with size and type, so that TensorFlow knows what to expect. TensorFlow also needs to know the type of data to expect: for most of this book, we will use float32. TensorFlow also provides float64 and float16. Note that the more bytes used for precision results in slower algorithms, but the less we use results in less precision. See the following code:
    a_var = tf.constant(42)
    x_input = tf.placeholder(tf.float32, [None, input_size])
    y_input = tf.placeholder(tf.float32, [None, num_classes])
  6. Define the model structure: After we have the data, and have initialized our variables and placeholders, we have to define the model. This is done by building a computational graph. TensorFlow chooses what operations and values must be the variables and placeholders to arrive at our model outcomes. We talk more in depth about computational graphs in the Operations in a Computational Graph TensorFlow recipe in Chapter 2, The TensorFlow Way. Our model for this example will be a linear model:
    y_pred = tf.add(tf.mul(x_input, weight_matrix), b_matrix)
  7. Declare the loss functions: After defining the model, we must be able to evaluate the output. This is where we declare the loss function. The loss function is very important as it tells us how far off our predictions are from the actual values. The different types of loss functions are explored in greater detail, in the Implementing Back Propagation recipe in Chapter 2, The TensorFlow Way:
    loss = tf.reduce_mean(tf.square(y_actual – y_pred))
  8. Initialize and train the model: Now that we have everything in place, we need to create an instance of our graph, feed in the data through the placeholders, and let TensorFlow change the variables to better predict our training data. Here is one way to initialize the computational graph:
    with tf.Session(graph=graph) as session:
      ...
      session.run(...)
      ...

    Note that we can also initiate our graph with:

    session = tf.Session(graph=graph)
    session.run(…)
  9. Evaluate the model: Once we have built and trained the model, we should evaluate the model by looking at how well it does with new data through some specified criteria. We evaluate on the train and test set and these evaluations will allow us to see if the model is underfit or overfit. We will address these in later recipes.
  10. Tune hyperparameters: Most of the time, we will want to go back and change some of the hyperparamters, based on the model performance. We then repeat the previous steps with different hyperparameters and evaluate the model on the validation set.
  11. Deploy/predict new outcomes: It is also important to know how to make predictions on new, unseen, data. We can do this with all of our models, once we have them trained.

How it works…

In TensorFlow, we have to set up the data, variables, placeholders, and model before we tell the program to train and change the variables to improve the predictions. TensorFlow accomplishes this through the computational graphs. These computational graphs are a directed graphs with no recursion, which allows for computational parallelism. We create a loss function for TensorFlow to minimize. TensorFlow accomplishes this by modifying the variables in the computational graph. Tensorflow knows how to modify the variables because it keeps track of the computations in the model and automatically computes the gradients for every variable. Because of this, we can see how easy it can be to make changes and try different data sources.

See also

Declaring Tensors

Tensors are the primary data structure that TensorFlow uses to operate on the computational graph. We can declare these tensors as variables and or feed them in as placeholders. First we must know how to create tensors.

Getting ready

When we create a tensor and declare it to be a variable, TensorFlow creates several graph structures in our computation graph. It is also important to point out that just by creating a tensor, TensorFlow is not adding anything to the computational graph. TensorFlow does this only after creating available out of the tensor. See the next section on variables and placeholders for more information.

How to do it…

Here we will cover the main ways to create tensors in TensorFlow:

  1. Fixed tensors:
    • Create a zero filled tensor. Use the following:
      zero_tsr = tf.zeros([row_dim, col_dim])
    • Create a one filled tensor. Use the following:
      ones_tsr = tf.ones([row_dim, col_dim])
    • Create a constant filled tensor. Use the following:
      filled_tsr = tf.fill([row_dim, col_dim], 42)
    • Create a tensor out of an existing constant. Use the following:
      constant_tsr = tf.constant([1,2,3])

    Note

    Note that the tf.constant() function can be used to broadcast a value into an array, mimicking the behavior of tf.fill() by writing tf.constant(42, [row_dim, col_dim])

  2. Tensors of similar shape:
    • We can also initialize variables based on the shape of other tensors, as follows:
      zeros_similar = tf.zeros_like(constant_tsr)
      ones_similar = tf.ones_like(constant_tsr)

    Note

    Note, that since these tensors depend on prior tensors, we must initialize them in order. Attempting to initialize all the tensors all at once willwould result in an error. See the section There's more… at the end of the next chapter on variables and placeholders.

  3. Sequence tensors:
    • TensorFlow allows us to specify tensors that contain defined intervals. The following functions behave very similarly to the range() outputs and numpy's linspace() outputs. See the following function:
      linear_tsr = tf.linspace(start=0, stop=1, start=3)
    • The resulting tensor is the sequence [0.0, 0.5, 1.0]. Note that this function includes the specified stop value. See the following function:
      integer_seq_tsr = tf.range(start=6, limit=15, delta=3)
    • The result is the sequence [6, 9, 12]. Note that this function does not include the limit value.
  4. Random tensors:
    • The following generated random numbers are from a uniform distribution:
      randunif_tsr = tf.random_uniform([row_dim, col_dim], minval=0, maxval=1)
    • Note that this random uniform distribution draws from the interval that includes the minval but not the maxval (minval <= x < maxval).
    • To get a tensor with random draws from a normal distribution, as follows:
      randnorm_tsr = tf.random_normal([row_dim, col_dim], mean=0.0, stddev=1.0)
    • There are also times when we wish to generate normal random values that are assured within certain bounds. The truncated_normal() function always picks normal values within two standard deviations of the specified mean. See the following:
      runcnorm_tsr = tf.truncated_normal([row_dim, col_dim], mean=0.0, stddev=1.0)
    • We might also be interested in randomizing entries of arrays. To accomplish this, there are two functions that help us: random_shuffle() and random_crop(). See the following:
      shuffled_output = tf.random_shuffle(input_tensor)
      cropped_output = tf.random_crop(input_tensor, crop_size)
    • Later on in this book, we will be interested in randomly cropping an image of size (height, width, 3) where there are three color spectrums. To fix a dimension in the cropped_output, you must give it the maximum size in that dimension:
      cropped_image = tf.random_crop(my_image, [height/2, width/2, 3])

How it works…

Once we have decided on how to create the tensors, then we may also create the corresponding variables by wrapping the tensor in the Variable() function, as follows. More on this in the next section:

my_var = tf.Variable(tf.zeros([row_dim, col_dim]))

There's more…

We are not limited to the built-in functions. We can convert any numpy array to a Python list, or constant to a tensor using the function convert_to_tensor(). Note that this function also accepts tensors as an input in case we wish to generalize a computation inside a function.

Using Placeholders and Variables

Placeholders and variables are key tools for using computational graphs in TensorFlow. We must understand the difference and when to best use them to our advantage.

Getting ready

One of the most important distinctions to make with the data is whether it is a placeholder or a variable. Variables are the parameters of the algorithm and TensorFlow keeps track of how to change these to optimize the algorithm. Placeholders are objects that allow you to feed in data of a specific type and shape and depend on the results of the computational graph, such as the expected outcome of a computation.

How to do it…

The main way to create a variable is by using the Variable() function, which takes a tensor as an input and outputs a variable. This is the declaration and we still need to initialize the variable. Initializing is what puts the variable with the corresponding methods on the computational graph. Here is an example of creating and initializing a variable:

my_var = tf.Variable(tf.zeros([2,3]))
sess = tf.Session()
initialize_op = tf.global_variables_initializer ()
sess.run(initialize_op)

To see what the computational graph looks like after creating and initializing a variable, see the next part in this recipe.

Placeholders are just holding the position for data to be fed into the graph. Placeholders get data from a feed_dict argument in the session. To put a placeholder in the graph, we must perform at least one operation on the placeholder. We initialize the graph, declare x to be a placeholder, and define y as the identity operation on x, which just returns x. We then create data to feed into the x placeholder and run the identity operation. It is worth noting that TensorFlow will not return a self-referenced placeholder in the feed dictionary. The code is shown here and the resulting graph is shown in the next section:

sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[2,2])
y = tf.identity(x)
x_vals = np.random.rand(2,2)
sess.run(y, feed_dict={x: x_vals})
# Note that sess.run(x, feed_dict={x: x_vals}) will result in a self-referencing error.

How it works…

The computational graph of initializing a variable as a tensor of zeros is shown in the following figure:

How it works…

Figure 1: Variable

In Figure 1, we can see what the computational graph looks like in detail with just one variable, initialized to all zeros. The grey shaded region is a very detailed view of the operations and constants involved. The main computational graph with less detail is the smaller graph outside of the grey region in the upper right corner. For more details on creating and visualizing graphs, see Chapter 10, Taking TensorFlow to Production , section 1.

Similarly, the computational graph of feeding a numpy array into a placeholder can be seen in the following figure:

How it works…

Figure 2: Here is the computational graph of a placeholder initialized. The grey shaded region is a very detailed view of the operations and constants involved. The main computational graph with less detail is the smaller graph outside of the grey region in the upper right.

There's more…

During the run of the computational graph, we have to tell TensorFlow when to initialize the variables we have created. TensorFlow must be informed about when it can initialize the variables. While each variable has an initializer method, the most common way to do this is to use the helper function, which is global_variables_initializer(). This function creates an operation in the graph that initializes all the variables we have created, as follows:

initializer_op = tf.global_variables_initializer ()

But if we want to initialize a variable based on the results of initializing another variable, we have to initialize variables in the order we want, as follows:

sess = tf.Session()
first_var = tf.Variable(tf.zeros([2,3]))
sess.run(first_var.initializer)
second_var = tf.Variable(tf.zeros_like(first_var))
# Depends on first_var
sess.run(second_var.initializer)

Working with Matrices

Understanding how TensorFlow works with matrices is very important to understanding the flow of data through computational graphs.

Getting ready

Many algorithms depend on matrix operations. TensorFlow gives us easy-to-use operations to perform such matrix calculations. For all of the following examples, we can create a graph session by running the following code:

import tensorflow as tf
sess = tf.Session()

How to do it…

  1. Creating matrices: We can create two-dimensional matrices from numpy arrays or nested lists, as we described in the earlier section on tensors. We can also use the tensor creation functions and specify a two-dimensional shape for functions such as zeros(), ones(), truncated_normal(), and so on. TensorFlow also allows us to create a diagonal matrix from a one-dimensional array or list with the function diag(), as follows:
    identity_matrix = tf.diag([1.0, 1.0, 1.0])
    A = tf.truncated_normal([2, 3])
    B = tf.fill([2,3], 5.0)
    C = tf.random_uniform([3,2])
    D = tf.convert_to_tensor(np.array([[1., 2., 3.],[-3., -7., -1.],[0., 5., -2.]]))
    print(sess.run(identity_matrix))
    [[ 1.  0.  0.]
     [ 0.  1.  0.]
     [ 0.  0.  1.]]
    print(sess.run(A))
    [[ 0.96751703  0.11397751 -0.3438891 ]
     [-0.10132604 -0.8432678   0.29810596]]
    print(sess.run(B))
    [[ 5.  5.  5.]
     [ 5.  5.  5.]]
    print(sess.run(C))
    [[ 0.33184157  0.08907614]
     [ 0.53189191  0.67605299]
     [ 0.95889051  0.67061249]]
    print(sess.run(D))
    [[ 1.  2.  3.]
     [-3. -7. -1.]
     [ 0.  5. -2.]]

    Note

    Note that if we were to run sess.run(C) again, we would reinitialize the random variables and end up with different random values.

  2. Addition and subtraction uses the following function:
    print(sess.run(A+B))
    [[ 4.61596632  5.39771316  4.4325695 ]
     [ 3.26702736  5.14477345  4.98265553]]
    print(sess.run(B-B))
    [[ 0.  0.  0.]
     [ 0.  0.  0.]]
    Multiplication
    print(sess.run(tf.matmul(B, identity_matrix)))
    [[ 5.  5.  5.]
     [ 5.  5.  5.]]
  3. Also, the function matmul() has arguments that specify whether or not to transpose the arguments before multiplication or whether each matrix is sparse.
  4. Transpose the arguments as follows:
    print(sess.run(tf.transpose(C)))
    [[ 0.67124544  0.26766731  0.99068872]
     [ 0.25006068  0.86560275  0.58411312]]
  5. Again, it is worth mentioning the reinitializing that gives us different values than before.
  6. For the determinant, use the following:
    print(sess.run(tf.matrix_determinant(D)))
    -38.0
    • Inverse:
      print(sess.run(tf.matrix_inverse(D)))
      [[-0.5        -0.5        -0.5       ]
       [ 0.15789474  0.05263158  0.21052632]
       [ 0.39473684  0.13157895  0.02631579]]

    Note

    Note that the inverse method is based on the Cholesky decomposition if the matrix is symmetric positive definite or the LU decomposition otherwise.

  7. Decompositions:
    • For the Cholesky decomposition, use the following:
      print(sess.run(tf.cholesky(identity_matrix)))
      [[ 1.  0.  1.]
       [ 0.  1.  0.]
       [ 0.  0.  1.]]
  8. For Eigenvalues and eigenvectors, use the following code:
    print(sess.run(tf.self_adjoint_eig(D))
    [[-10.65907521  -0.22750691   2.88658212]
     [  0.21749542   0.63250104  -0.74339638]
     [  0.84526515   0.2587998    0.46749277]
     [ -0.4880805    0.73004459   0.47834331]]

Note that the function self_adjoint_eig() outputs the eigenvalues in the first row and the subsequent vectors in the remaining vectors. In mathematics, this is known as the Eigen decomposition of a matrix.

How it works…

TensorFlow provides all the tools for us to get started with numerical computations and adding such computations to our graphs. This notation might seem quite heavy for simple matrix operations. Remember that we are adding these operations to the graph and telling TensorFlow what tensors to run through those operations. While this might seem verbose now, it helps to understand the notations in later chapters, when this way of computation will make it easier to accomplish our goals.

Declaring Operations

Now we must learn about the other operations we can add to a TensorFlow graph.

Getting ready

Besides the standard arithmetic operations, TensorFlow provides us with more operations that we should be aware of. We need to know how to use them before proceeding. Again, we can create a graph session by running the following code:

import tensorflow as tf
sess = tf.Session()

How to do it…

TensorFlow has the standard operations on tensors: add(), sub(), mul(), and div(). Note that all of these operations in this section will evaluate the inputs element-wise unless specified otherwise:

  1. TensorFlow provides some variations of div() and relevant functions.
  2. It is worth mentioning that div() returns the same type as the inputs. This means it really returns the floor of the division (akin to Python 2) if the inputs are integers. To return the Python 3 version, which casts integers into floats before dividing and always returning a float, TensorFlow provides the function truediv() function, as shown as follows:
    print(sess.run(tf.div(3,4)))
    0
    print(sess.run(tf.truediv(3,4)))
    0.75
  3. If we have floats and want an integer division, we can use the function floordiv(). Note that this will still return a float, but rounded down to the nearest integer. The function is shown as follows:
    print(sess.run(tf.floordiv(3.0,4.0)))
    0.0
  4. Another important function is mod(). This function returns the remainder after the division. It is shown as follows:
    print(sess.run(tf.mod(22.0, 5.0)))
    2.0-
  5. The cross-product between two tensors is achieved by the cross() function. Remember that the cross-product is only defined for two three-dimensional vectors, so it only accepts two three-dimensional tensors. The function is shown as follows:
    print(sess.run(tf.cross([1., 0., 0.], [0., 1., 0.])))
    [ 0.  0.  1.0]
  6. Here is a compact list of the more common math functions. All of these functions operate elementwise.

    abs()

    Absolute value of one input tensor

    ceil()

    Ceiling function of one input tensor

    cos()

    Cosine function of one input tensor

    exp()

    Base e exponential of one input tensor

    floor()

    Floor function of one input tensor

    inv()

    Multiplicative inverse (1/x) of one input tensor

    log()

    Natural logarithm of one input tensor

    maximum()

    Element-wise max of two tensors

    minimum()

    Element-wise min of two tensors

    neg()

    Negative of one input tensor

    pow()

    The first tensor raised to the second tensor element-wise

    round()

    Rounds one input tensor

    rsqrt()

    One over the square root of one tensor

    sign()

    Returns -1, 0, or 1, depending on the sign of the tensor

    sin()

    Sine function of one input tensor

    sqrt()

    Square root of one input tensor

    square()

    Square of one input tensor

  7. Specialty mathematical functions: There are some special math functions that get used in machine learning that are worth mentioning and TensorFlow has built in functions for them. Again, these functions operate element-wise, unless specified otherwise:

    digamma()

    Psi function, the derivative of the lgamma() function

    erf()

    Gaussian error function, element-wise, of one tensor

    erfc()

    Complimentary error function of one tensor

    igamma()

    Lower regularized incomplete gamma function

    igammac()

    Upper regularized incomplete gamma function

    lbeta()

    Natural logarithm of the absolute value of the beta function

    lgamma()

    Natural logarithm of the absolute value of the gamma function

    squared_difference()

    Computes the square of the differences between two tensors

How it works…

It is important to know what functions are available to us to add to our computational graphs. Mostly, we will be concerned with the preceding functions. We can also generate many different custom functions as compositions of the preceding functions, as follows:

# Tangent function (tan(pi/4)=1)
print(sess.run(tf.div(tf.sin(3.1416/4.), tf.cos(3.1416/4.))))
1.0

There's more…

If we wish to add other operations to our graphs that are not listed here, we must create our own from the preceding functions. Here is an example of an operation not listed previously that we can add to our graph. We choose to add a custom polynomial function, There's more…:

def custom_polynomial(value):
    return(tf.sub(3 * tf.square(value), value) + 10)
print(sess.run(custom_polynomial(11)))
362

Implementing Activation Functions

Getting ready

When we start to use neural networks, we will use activation functions regularly because activation functions are a mandatory part of any neural network. The goal of the activation function is to adjust weight and bias. In TensorFlow, activation functions are non-linear operations that act on tensors. They are functions that operate in a similar way to the previous mathematical operations. Activation functions serve many purposes, but a few main concepts is that they introduce a non-linearity into the graph while normalizing the outputs. Start a TensorFlow graph with the following commands:

import tensorflow as tf
sess = tf.Session()

How to do it…

The activation functions live in the neural network (nn) library in TensorFlow. Besides using built-in activation functions, we can also design our own using TensorFlow operations. We can import the predefined activation functions (import tensorflow.nn as nn) or be explicit and write .nn in our function calls. Here, we choose to be explicit with each function call:

  1. The rectified linear unit, known as ReLU, is the most common and basic way to introduce a non-linearity into neural networks. This function is just max(0,x). It is continuous but not smooth. It appears as follows:
    print(sess.run(tf.nn.relu([-3., 3., 10.])))
    [  0.  3.  10.]
  2. There will be times when we wish to cap the linearly increasing part of the preceding ReLU activation function. We can do this by nesting the max(0,x) function into a min() function. The implementation that TensorFlow has is called the ReLU6 function. This is defined as min(max(0,x),6). This is a version of the hard-sigmoid function and is computationally faster, and does not suffer from vanishing (infinitesimally near zero) or exploding values. This will come in handy when we discuss deeper neural networks in Chapters 8, Convolutional Neural Networks and Chapter 9, Recurrent Neural Networks. It appears as follows:
    print(sess.run(tf.nn.relu6([-3., 3., 10.])))
    [ 0.  3.  6.]
  3. The sigmoid function is the most common continuous and smooth activation function. It is also called a logistic function and has the form 1/(1+exp(-x)). The sigmoid is not often used because of the tendency to zero-out the back propagation terms during training. It appears as follows:
    print(sess.run(tf.nn.sigmoid([-1., 0., 1.])))
    [ 0.26894143  0.5         0.7310586 ]

    Note

    We should be aware that some activation functions are not zero centered, such as the sigmoid. This will require us to zero-mean the data prior to using it in most computational graph algorithms.

  4. Another smooth activation function is the hyper tangent. The hyper tangent function is very similar to the sigmoid except that instead of having a range between 0 and 1, it has a range between -1 and 1. The function has the form of the ratio of the hyperbolic sine over the hyperbolic cosine. But another way to write this is ((exp(x)-exp(-x))/(exp(x)+exp(-x)). It appears as follows:
    print(sess.run(tf.nn.tanh([-1., 0., 1.])))
    [-0.76159418  0.         0.76159418 ]
  5. The softsign function also gets used as an activation function. The form of this function is x/(abs(x) + 1). The softsign function is supposed to be a continuous approximation to the sign function. It appears as follows:
    print(sess.run(tf.nn.softsign([-1., 0., -1.])))
    [-0.5  0.   0.5]
  6. Another function, the softplus, is a smooth version of the ReLU function. The form of this function is log(exp(x) + 1). It appears as follows:
    print(sess.run(tf.nn.softplus([-1., 0., -1.])))
    [ 0.31326166  0.69314718  1.31326163]

    Note

    The softplus goes to infinity as the input increases whereas the softsign goes to 1. As the input gets smaller, however, the softplus approaches zero and the softsign goes to -1.

  7. The Exponential Linear Unit (ELU) is very similar to the softplus function except that the bottom asymptote is -1 instead of 0. The form is (exp(x)+1) if x < 0 else x. It appears as follows:
    print(sess.run(tf.nn.elu([-1., 0., -1.])))
    [-0.63212055  0.          1.        ]

How it works…

These activation functions are the way that we introduce nonlinearities in neural networks or other computational graphs in the future. It is important to note where in our network we are using activation functions. If the activation function has a range between 0 and 1 (sigmoid), then the computational graph can only output values between 0 and 1.

If the activation functions are inside and hidden between nodes, then we want to be aware of the effect that the range can have on our tensors as we pass them through. If our tensors were scaled to have a mean of zero, we will want to use an activation function that preserves as much variance as possible around zero. This would imply we want to choose an activation function such as the hyperbolic tangent (tanh) or softsign. If the tensors are all scaled to be positive, then we would ideally choose an activation function that preserves variance in the positive domain.

There's more…

Here are two graphs that illustrate the different activation functions. The following figure shows the following functions ReLU, ReLU6, softplus, exponential LU, sigmoid, softsign, and the hyperbolic tangent:

There's more…

Figure 3: Activation functions of softplus, ReLU, ReLU6, and exponential LU

In Figure 3, we can see four of the activation functions, softplus, ReLU, ReLU6, and exponential LU. These functions flatten out to the left of zero and linearly increase to the right of zero, with the exception of ReLU6, which has a maximum value of 6:

There's more…

Figure 4: Sigmoid, hyperbolic tangent (tanh), and softsign activation function

In Figure 4, we have the activation functions sigmoid, hyperbolic tangent (tanh), and softsign. These activation functions are all smooth and have a S n shape. Note that there are two horizontal asymptotes for these functions.

Working with Data Sources

For most of this book, we will rely on the use of datasets to fit machine learning algorithms. This section has instructions on how to access each of these various datasets through TensorFlow and Python.

Getting ready

In TensorFlow some of the datasets that we will use are built in to Python libraries, some will require a Python script to download, and some will be manually downloaded through the Internet. Almost all of these datasets require an active Internet connection to retrieve data.

How to do it…

  1. Iris data: This dataset is arguably the most classic dataset used in machine learning and maybe all of statistics. It is a dataset that measures sepal length, sepal width, petal length, and petal width of three different types of iris flowers: Iris setosa, Iris virginica, and Iris versicolor. There are 150 measurements overall, 50 measurements of each species. To load the dataset in Python, we use Scikit Learn's dataset function, as follows:
    from sklearn import datasets
    iris = datasets.load_iris()
    print(len(iris.data))
    150
    print(len(iris.target))
    150
    print(iris.target[0]) # Sepal length, Sepal width, Petal length, Petal width
    [ 5.1 3.5 1.4 0.2]
    print(set(iris.target)) # I. setosa, I. virginica, I. versicolor
    {0, 1, 2}
  2. Birth weight data: The University of Massachusetts at Amherst has compiled many statistical datasets that are of interest (1). One such dataset is a measure of child birth weight and other demographic and medical measurements of the mother and family history. There are 189 observations of 11 variables. Here is how to access the data in Python:
    import requests
    birthdata_url = 'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'
    birth_file = requests.get(birthdata_url)
    birth_data = birth_file.text.split('\'r\n') [5:]
    birth_header = [x for x in birth_data[0].split( '') if len(x)>=1]
    birth_data = [[float(x) for x in y.split( ')'' if len(x)>=1] for y in birth_data[1:] if len(y)>=1]
    print(len(birth_data))
    189
    print(len(birth_data[0]))
    11
  3. Boston Housing data: Carnegie Mellon University maintains a library of datasets in their Statlib Library. This data is easily accessible via The University of California at Irvine's Machine-Learning Repository (2). There are 506 observations of house worth along with various demographic data and housing attributes (14 variables). Here is how to access the data in Python:
    import requests
    housing_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
    housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV0']
    housing_file = requests.get(housing_url)
    housing_data = [[float(x) for x in y.split( '') if len(x)>=1] for y in housing_file.text.split('\n') if len(y)>=1]
    print(len(housing_data))
    506
    print(len(housing_data[0]))
    14
  4. MNIST handwriting data: MNIST (Mixed National Institute of Standards and Technology) is a subset of the larger NIST handwriting database. The MNIST handwriting dataset is hosted on Yann LeCun's website (https://yann.lecun.com/exdb/mnist/). It is a database of 70,000 images of single digit numbers (0-9) with about 60,000 annotated for a training set and 10,000 for a test set. This dataset is used so often in image recognition that TensorFlow provides built-in functions to access this data. In machine learning, it is also important to provide validation data to prevent overfitting (target leakage). Because of this TensorFlow, sets aside 5,000 of the train set into a validation set. Here is how to access the data in Python:
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/"," one_hot=True)
    print(len(mnist.train.images))
    55000
    print(len(mnist.test.images))
    10000
    print(len(mnist.validation.images))
    5000
    print(mnist.train.labels[1,:]) # The first label is a 3'''
    [ 0.  0.  0.  1.  0.  0.  0.  0.  0.  0.]
  5. Spam-ham text data. UCI's machine -learning data set library (2) also holds a spam-ham text message dataset. We can access this .zip file and get the spam-ham text data as follows:
    import requests
    import io
    from zipfile import ZipFile
    zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
    r = requests.get(zip_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('SMSSpamCollection')
    text_data = file.decode()
    text_data = text_data.encode('ascii',errors='ignore')
    text_data = text_data.decode().split(\n')
    text_data = [x.split(\t') for x in text_data if len(x)>=1]
    [text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
    print(len(text_data_train))
    5574
    print(set(text_data_target))
    {'ham', 'spam'}
    print(text_data_train[1])
    Ok lar... Joking wif u oni...
  6. Movie review data: Bo Pang from Cornell has released a movie review dataset that classifies reviews as good or bad (3). You can find the data on the website, http://www.cs.cornell.edu/people/pabo/movie-review-data/. To download, extract, and transform this data, we run the following code:
    import requests
    import io
    import tarfile
    movie_data_url = 'http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz'
    r = requests.get(movie_data_url)
    # Stream data into temp object
    stream_data = io.BytesIO(r.content)
    tmp = io.BytesIO()
    while True:
        s = stream_data.read(16384)
        if not s:
            break
        tmp.write(s)
    stream_data.close()
    tmp.seek(0)
    # Extract tar file
    tar_file = tarfile.open(fileobj=tmp, mode="r:gz")
    pos = tar_file.extractfile('rt'-polaritydata/rt-polarity.pos')
    neg = tar_file.extractfile('rt'-polaritydata/rt-polarity.neg')
    # Save pos/neg reviews (Also deal with encoding)
    pos_data = []
    for line in pos:
        pos_data.append(line.decode('ISO'-8859-1').encode('ascii',errors='ignore').decode())
    neg_data = []
    for line in neg:
        neg_data.append(line.decode('ISO'-8859-1').encode('ascii',errors='ignore').decode())
    tar_file.close()
    print(len(pos_data))
    5331
    print(len(neg_data))
    5331
    # Print out first negative review
    print(neg_data[0])
    simplistic , silly and tedious .
  7. CIFAR-10 image data: The Canadian Institute For Advanced Research has released an image set that contains 80 million labeled colored images (each image is scaled to 32x32 pixels). There are 10 different target classes (airplane, automobile, bird, and so on). The CIFAR-10 is a subset that has 60,000 images. There are 50,000 images in the training set, and 10,000 in the test set. Since we will be using this dataset in multiple ways, and because it is one of our larger datasets, we will not run a script each time we need it. To get this dataset, please navigate to http://www.cs.toronto.edu/~kriz/cifar.html, and download the CIFAR-10 dataset. We will address how to use this dataset in the appropriate chapters.
  8. The works of Shakespeare text data: Project Gutenberg (5) is a project that releases electronic versions of free books. They have compiled all of the works of Shakespeare together and here is how to access the text file through Python:
    import requests
    shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt'
    # Get Shakespeare text
    response = requests.get(shakespeare_url)
    shakespeare_file = response.content
    # Decode binary into string
    shakespeare_text = shakespeare_file.decode('utf-8')
    # Drop first few descriptive paragraphs.
    shakespeare_text = shakespeare_text[7675:]
    print(len(shakespeare_text)) # Number of characters
    5582212
  9. English-German sentence translation data: The Tatoeba project (http://tatoeba.org) collects sentence translations in many languages. Their data has been released under the Creative Commons License. From this data, ManyThings.org (http://www.manythings.org) has compiled sentence-to-sentence translations in text files available for download. Here we will use the English-German translation file, but you can change the URL to whatever languages you would like to use:
    import requests
    import io
    from zipfile import ZipFile
    sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
    r = requests.get(sentence_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('deu.txt''')
    # Format Data
    eng_ger_data = file.decode()
    eng_ger_data = eng_ger_data.encode('ascii''',errors='ignore''')
    eng_ger_data = eng_ger_data.decode().split(\n''')
    eng_ger_data = [x.split(\t''') for x in eng_ger_data if len(x)>=1]
    [english_sentence, german_sentence] = [list(x) for x in zip(*eng_ger_data)]
    print(len(english_sentence))
    137673
    print(len(german_sentence))
    137673
    print(eng_ger_data[10])
    ['I won!, 'Ich habe gewonnen!']

How it works…

When it comes time to use one of these datasets in a recipe, we will refer you to this section and assume that the data is loaded in such a way as described in the preceding text. If further data transformation or pre-processing is needed, then such code will be provided in the recipe itself.

See also

Additional Resources

Here we will provide additional links, documentation sources, and tutorials that are of great assistance to learning and using TensorFlow.

Getting ready

When learning how to use TensorFlow, it helps to know where to turn to for assistance or pointers. This section lists resources to get TensorFlow running and to troubleshoot problems.

How to do it…

Here is a list of TensorFlow resources:

  1. The code for this book is available online at https://github.com/nfmcclure/tensorflow_cookbook.
  2. The official TensorFlow Python API documentation is located at https://www.tensorflow.org/api_docs/python. Here there is documentation and examples of all of the functions, objects, and methods in TensorFlow. Note the version number r0.8' in the link and realize that a more current version may be available.
  3. TensorFlow's official tutorials are very thorough and detailed. They are located at https://www.tensorflow.org/tutorials/index.html. They start covering image recognition models, and work through Word2Vec, RNN models, and sequence-to-sequence models. They also have additional tutorials on generating fractals and solving a PDE system. Note that they are continually adding more tutorials and examples to this collection.
  4. TensorFlow's official GitHub repository is available via https://github.com/tensorflow/tensorflow. Here you can view the open-sourced code and even fork or clone the most current version of the code if you want. You can also see current filed issues if you navigate to the issues directory.
  5. A public Docker container that is kept current by TensorFlow is available on Dockerhub at: https://hub.docker.com/r/tensorflow/tensorflow/
  6. A downloadable virtual machine that contains TensorFlow installed on an Ubuntu 15.04 OS is available as well. This option is great for running the UNIX version of TensorFlow on a Windows PC. The VM is available through a Google Document request form at: https://docs.google.com/forms/d/1mUztUlK6_z31BbMW5ihXaYHlhBcbDd94mERe-8XHyoI/viewform. It is about a 2 GB download and requires VMWare player to run. VMWare player is a product made by VMWare and is free for personal use and is available at: https://www.vmware.com/go/downloadplayer/. This virtual machine is maintained by David Winters (1).
  7. A great source for community help is Stack Overflow. There is a tag for TensorFlow. This tag seems to be growing in interest as TensorFlow is gaining more popularity. To view activity on this tag, visit http://stackoverflow.com/questions/tagged/Tensorflow
  8. While TensorFlow is very agile and can be used for many things, the most common usage of TensorFlow is deep learning. To understand the basis for deep learning, how the underlying mathematics works, and to develop more intuition on deep learning, Google has created an online course available on Udacity. To sign up and take the video lecture course visit https://www.udacity.com/course/deep-learning--ud730.
  9. TensorFlow has also made a site where you can visually explore training a neural network while changing the parameters and datasets. Visit http://playground.tensorflow.org/ to explore how different settings affect the training of neural networks.
  10. Geoffrey Hinton teaches an online course, Neural Networks for Machine Learning, through Coursera. Visit https://www.coursera.org/learn/neural-networks
  11. Stanford University has an online syllabus and detailed course notes for Convolutional Neural Networks for Visual Recognition. Visit http://cs231n.stanford.edu/
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Your quick guide to implementing TensorFlow in your day-to-day machine learning activities
  • Learn advanced techniques that bring more accuracy and speed to machine learning
  • Upgrade your knowledge to the second generation of machine learning with this guide on TensorFlow

Description

TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow. This guide starts with the fundamentals of the TensorFlow library which includes variables, matrices, and various data sources. Moving ahead, you will get hands-on experience with Linear Regression techniques with TensorFlow. The next chapters cover important high-level concepts such as neural networks, CNN, RNN, and NLP. Once you are familiar and comfortable with the TensorFlow ecosystem, the last chapter will show you how to take it to production.

Who is this book for?

This book is ideal for data scientists who are familiar with C++ or Python and perform machine learning activities on a day-to-day basis. Intermediate and advanced machine learning implementers who need a quick guide they can easily navigate will find it useful.

What you will learn

  • Become familiar with the basics of the TensorFlow machine learning library
  • Get to know Linear Regression techniques with TensorFlow
  • Learn SVMs with hands-on recipes
  • Implement neural networks and improve predictions
  • Apply NLP and sentiment analysis to your data
  • Master CNN and RNN through practical recipes
  • Take TensorFlow into production

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Feb 14, 2017
Length: 370 pages
Edition : 1st
Language : English
ISBN-13 : 9781786462169
Vendor :
Google
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Feb 14, 2017
Length: 370 pages
Edition : 1st
Language : English
ISBN-13 : 9781786462169
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 129.97
TensorFlow Machine Learning Cookbook
€45.99
Deep Learning with TensorFlow
€41.99
Deep Learning with Keras
€41.99
Total 129.97 Stars icon
Banner background image

Table of Contents

12 Chapters
1. Getting Started with TensorFlow Chevron down icon Chevron up icon
2. The TensorFlow Way Chevron down icon Chevron up icon
3. Linear Regression Chevron down icon Chevron up icon
4. Support Vector Machines Chevron down icon Chevron up icon
5. Nearest Neighbor Methods Chevron down icon Chevron up icon
6. Neural Networks Chevron down icon Chevron up icon
7. Natural Language Processing Chevron down icon Chevron up icon
8. Convolutional Neural Networks Chevron down icon Chevron up icon
9. Recurrent Neural Networks Chevron down icon Chevron up icon
10. Taking TensorFlow to Production Chevron down icon Chevron up icon
11. More with TensorFlow Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.7
(18 Ratings)
5 star 38.9%
4 star 22.2%
3 star 16.7%
2 star 11.1%
1 star 11.1%
Filter icon Filter
Top Reviews

Filter reviews by




Chax Oct 01, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
good
Amazon Verified review Amazon
Mithun Patel Dec 07, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great book
Amazon Verified review Amazon
Antonio Gulli May 21, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I read many books about Deep Learning, and was looking for an handson book on Tensorflow. This Cookbook is very practical and it explains how to use TF step-by-step. It starts with simple graph computations, then it extends into matrix computations, linear regression, and many additional neural network algorithms including neural networks. Definitively recommended if you want to have a swiss knife reference book
Amazon Verified review Amazon
Amazon Customer Feb 27, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I am the reviewer of this book,Many examples of this book are very helpful for the beginners of TensorFlow users.
Amazon Verified review Amazon
Satya Kondapalli Mar 09, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have ordered and returned some books related TF and Neural Networks. Many books start very high level and lost interest. Finally I found book I am interested in. You can start coding in TF using this book. Once you built your code skills then you can buy more theoretical books and lost somewhere. Note: When framework doing all the work, why do I need to learn every math function. This is a no nonsense book for me. I love it. I have been teaching big data past 6 years. Lately I have been doing some work in spark ML and moving on to TensorFlow. Spark also supporting TensorFrames. Deep learning will soon eat machine learning.I suggest this book for any one start learning TF.Satya , ambariCloud
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.