The next architecture we're going to discuss is Visual Geometry Group (VGG) (from Oxford's Visual Geometry Group, Very Deep Convolutional Networks for Large-Scale Image Recognition, https://arxiv.org/abs/1409.1556). The VGG family of networks remains popular today and is often used as a benchmark against newer architectures. Prior to VGG (for example, LeNet-5: http://yann.lecun.com/exdb/lenet/ and AlexNet), the initial convolutional layers of a network used filters with large receptive fields, such as 11×11. Additionally, the networks usually had alternating single convolutional and pooling layers. The authors of the paper observed that a convolutional layer with a large filter size can be replaced with a stack of two or more convolutional layers with smaller filters (factorized convolution). For example, we can replace...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia