Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science for Decision Makers

You're reading from   Data Science for Decision Makers Enhance your leadership skills with data science and AI expertise

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781837637294
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jon Howells Jon Howells
Author Profile Icon Jon Howells
Jon Howells
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Understanding Data Science and Its Foundations
2. Chapter 1: Introducing Data Science FREE CHAPTER 3. Chapter 2: Characterizing and Collecting Data 4. Chapter 3: Exploratory Data Analysis 5. Chapter 4: The Significance of Significance 6. Chapter 5: Understanding Regression 7. Part 2: Machine Learning – Concepts, Applications, and Pitfalls
8. Chapter 6: Introducing Machine Learning 9. Chapter 7: Supervised Machine Learning 10. Chapter 8: Unsupervised Machine Learning 11. Chapter 9: Interpreting and Evaluating Machine Learning Models 12. Chapter 10: Common Pitfalls in Machine Learning 13. Part 3: Leading Successful Data Science Projects and Teams
14. Chapter 11: The Structure of a Data Science Project 15. Chapter 12: The Data Science Team 16. Chapter 13: Managing the Data Science Team 17. Chapter 14: Continuing Your Journey as a Data Science Leader 18. Index 19. Other Books You May Enjoy

Statistics and data science

The British mathematician Karl Pearson once stated, “Statistics is the grammar of science.

If you’re starting your journey of leading data science, ML, or AI initiatives within your organization, or just working with data scientists and ML engineers, having a foundation in statistical knowledge is essential.

Having a foundation in statistical knowledge is crucial for individuals embarking on a journey into leading projects or teams within the field of data science. It enables them to gain a competitive advantage in extracting valuable insights from data. Statistics plays a vital role as it offers various tools and techniques to identify patterns and uncover deeper insights from the available data. A good grasp of statistics allows individuals to think critically, approach problem-solving creatively, and make data-driven decisions. In this section, we aim to cover essential statistical topics that are relevant to data science.

What is statistics?

Before going further, it will be helpful to define what we mean by statistics as the term can be used in several different ways. It can be used to do the following:

  • Indicate the whole discipline of statistics
  • Refer to the methods that are used to collect, process, and interpret quantitative data
  • Refer to collections of gathered data
  • Refer to calculated figures (such as the mean) that are used to interpret the data that’s been gathered

In this case, we define statistics using the second definition – the methods that are used to collect, process, and interpret quantitative data.

Today, few industries are untouched by statistical thinking. For example, within market research, statistics is used when sampling surveys and comparing results between groups to understand which insights are statistically significant; within life sciences, statistics is used to measure and evaluate the efficacy of pharmaceuticals; and within financial services, statistics is used to model and understand risk.

I’m sure you’re familiar with many of these and other applications of statistics, and you may have studied statistics before at school, college, or in your professional career, and much of what follows in this chapter may not be brand new information. Even if this is the case, it can be useful to have a refresher as unfortunately, it’s not possible to pause a career to complete a statistics course.

When you’re leading data science, ML, or AI initiatives, understanding statistics is an essential skill, whether you’re working with simple statistical models or understanding the data being used or a model’s performance when you’re training and evaluating deep learning AI models.

With this in mind, let’s dive into some of the core concepts within probability and statistics.

You have been reading a chapter from
Data Science for Decision Makers
Published in: Jul 2024
Publisher: Packt
ISBN-13: 9781837637294
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image