The bag-of-words model represents documents as vectors that reflect the tokens they contain. Word embeddings represent tokens as lower dimensional vectors so that their relative location reflects their relationship in terms of how they are used in context. They embody the distributional hypothesis from linguistics that claims words are best defined by the company they keep.
Word vectors are capable of capturing numerous semantic aspects; not only are synonyms close to each other, but words can have multiple degrees of similarity, for example, the word driver could be similar to motorist or to cause. Furthermore, embeddings reflect relationships among pairs of words such as analogies (Tokyo is to Japan what Paris is to France, or went is to go what saw is to see) as we will illustrate later in this section.
Embeddings result from training a...