We started off this book with a simple discussion of what artificial general intelligence (AGI) is. In short, AGI is our attempt at generalizing an intelligent system to solve multiple tasks. RL is often thought of as a stepping stool to AGI primarily because it tries to generalize state-based learning. While both RL and AGI take deep inspiration from how we think, be it rewards or possibly consciousness itself, the former tends to incorporate direct analogies. The actor-critic concept in RL is an excellent example of how we use an interpretation of human psychology to create a form of learning. For instance, we humans often consider the consequences of our actions and determine the advantages they may or may not give us. This example is perfectly analogous to actor-critic and advantage methods we use in RL. Take this further and...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia