Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Go Quick Start Guide

You're reading from   Machine Learning with Go Quick Start Guide Hands-on techniques for building supervised and unsupervised machine learning workflows

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781838550356
Length 168 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Michael Bironneau Michael Bironneau
Author Profile Icon Michael Bironneau
Michael Bironneau
Toby Coleman Toby Coleman
Author Profile Icon Toby Coleman
Toby Coleman
Arrow right icon
View More author details
Toc

Classification

When starting any supervised learning problem, the first step is to load and prepare the data. We are going to start by loading the MNIST Fashion dataset[3], a collection of small, grayscale images showing different items of clothing. Our job is to build a system that can recognize what is in each image; that is, does it contain a dress, a shoe, a coat, and so on?

First, we need to download the dataset by running the download-fashion-mnist.sh script in the code repository. Then, we will load it into Go:

import (
"fmt"
mnist "github.com/petar/GoMNIST"
"github.com/kniren/gota/dataframe"
"github.com/kniren/gota/series"
"math/rand"
"github.com/cdipaolo/goml/linear"
"github.com/cdipaolo/goml/base"
"image"
"bytes"
"math"
"github.com...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image