Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with LightGBM and Python

You're reading from   Machine Learning with LightGBM and Python A practitioner's guide to developing production-ready machine learning systems

Arrow left icon
Product type Paperback
Published in Sep 2023
Publisher Packt
ISBN-13 9781800564749
Length 252 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Andrich van Wyk Andrich van Wyk
Author Profile Icon Andrich van Wyk
Andrich van Wyk
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Gradient Boosting and LightGBM Fundamentals
2. Chapter 1: Introducing Machine Learning FREE CHAPTER 3. Chapter 2: Ensemble Learning – Bagging and Boosting 4. Chapter 3: An Overview of LightGBM in Python 5. Chapter 4: Comparing LightGBM, XGBoost, and Deep Learning 6. Part 2: Practical Machine Learning with LightGBM
7. Chapter 5: LightGBM Parameter Optimization with Optuna 8. Chapter 6: Solving Real-World Data Science Problems with LightGBM 9. Chapter 7: AutoML with LightGBM and FLAML 10. Part 3: Production-ready Machine Learning with LightGBM
11. Chapter 8: Machine Learning Pipelines and MLOps with LightGBM 12. Chapter 9: LightGBM MLOps with AWS SageMaker 13. Chapter 10: LightGBM Models with PostgresML 14. Chapter 11: Distributed and GPU-Based Learning with LightGBM 15. Index 16. Other Books You May Enjoy

Building LightGBM models

This section provides an end-to-end example of solving a real-world problem using LightGBM. We provide a more detailed look at data preparation for a problem and explain how to find suitable parameters for our algorithms. We use multiple variants of LightGBM to explore relative performance and compare them against random forests.

Cross-validation

Before we delve into solving a problem, we need to discuss a better way of validating algorithm performance. Splitting the data into two or three subsets is standard practice when training a model. The training data is used to train the model, the validation data is a hold-out set used to validate the data during training, and the test data is used to validate the performance after training.

In previous examples, we have done this split only once, building a single training and test to train and validate the model. The issue with this approach is that our model could get “lucky.” If, by chance...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image