Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Azure Data Factory Cookbook

You're reading from   Azure Data Factory Cookbook Build ETL, Hybrid ETL, and ELT pipelines using ADF, Synapse Analytics, Fabric and Databricks

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781803246598
Length 532 pages
Edition 2nd Edition
Tools
Arrow right icon
Authors (4):
Arrow left icon
Tonya Chernyshova Tonya Chernyshova
Author Profile Icon Tonya Chernyshova
Tonya Chernyshova
Xenia Ireton Xenia Ireton
Author Profile Icon Xenia Ireton
Xenia Ireton
Dmitry Foshin Dmitry Foshin
Author Profile Icon Dmitry Foshin
Dmitry Foshin
Dmitry Anoshin Dmitry Anoshin
Author Profile Icon Dmitry Anoshin
Dmitry Anoshin
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started with ADF 2. Orchestration and Control Flow FREE CHAPTER 3. Setting Up Synapse Analytics 4. Working with Data Lake and Spark Pools 5. Working with Big Data and Databricks 6. Data Migration – Azure Data Factory and Other Cloud Services 7. Extending Azure Data Factory with Logic Apps and Azure Functions 8. Microsoft Fabric and Power BI, Azure ML, and Cognitive Services 9. Managing Deployment Processes with Azure DevOps 10. Monitoring and Troubleshooting Data Pipelines 11. Working with Azure Data Explorer 12. The Best Practices of Working with ADF 13. Other Books You May Enjoy
14. Index

What this book covers

Chapter 1, Getting Started with ADF, will provide a general introduction to the Azure data platform. In this chapter, you will learn about the ADF interface and options as well as common use cases. You will perform hands-on exercises in order to find ADF in the Azure portal and create your first ADF job.

Chapter 2, Orchestration and Control Flow, will introduce you to the building blocks of data processing in ADF. The chapter contains hands-on exercises that show you how to set up linked services and datasets for your data sources, use various types of activities, design data-processing workflows, and create triggers for data transfers.

Chapter 3, Setting Up Synapse Analytics, covers key features and benefits of cloud data warehousing and Azure Synapse Analytics. You will learn how to connect and configure Azure Synapse Analytics, load data, build transformation processes, and operate data flows.

Chapter 4, Working with Data Lake and Spark Pools, will cover the main features of the Azure Data Lake Storage Gen2. It is a multimodal cloud storage solution that is frequently used for big data analytics. We will load and manage the datasets that we will use for analytics in the next chapter.

Chapter 5, Working with Big Data and Databricks, will actively engage with analytical tools from Azure’s data services. You will learn how to build data models in Delta Lake using Azure Databricks and mapping data flows. Also, this recipe will show you how to set up HDInsights clusters and how to work with delta tables.

Chapter 6, Data Migration – Azure Data Factory and Other Cloud Services, will walk though several illustrative examples on migrating data from Amazon Web Services and Google Cloud providers. In addition, you will learn how to use ADF’s custom activities to work with providers who are not supported by Microsoft’s built-in connectors.

Chapter 7, Extending Azure Data Factory with Logic Apps and Azure Functions, will show you how to harness the power of serverless execution by integrating some of the most commonly used Azure services: Azure Logic Apps and Azure Functions. These recipes will help you understand how Azure services can be useful in designing Extract, Transform, Load (ETL) pipelines.

Chapter 8, Microsoft Fabric and Power BI, Azure ML, and Cognitive Services, will teach you how to build an ADF pipeline that operates on a pre-built Azure ML model. You will also create and run an ADF pipeline that leverages Azure AI for text data analysis. In the last three recipes, you’ll familiarize yourself with the primary components of Microsoft Fabric Data Factory.

Chapter 9, Managing Deployment Processes with Azure DevOps, will delve into setting up CI and CD for data analytics solutions in ADF using Azure DevOps. Throughout the process, we will also demonstrate how to use Visual Studio Code to facilitate the deployment of changes to ADF.

Chapter 10, Monitoring and Troubleshooting Data Pipelines, will introduce tools to help you manage and monitor your ADF pipelines. You will learn where and how to find more information about what went wrong when a pipeline failed, how to debug a failed run, how to set up alerts that notify you when there is a problem, and how to identify problems with your integration runtimes.

Chapter 11, Working with Azure Data Explorer, will help you to set up a data ingestion pipeline from ADF to Azure Data Explorer: it includes a step-by-step guide to ingesting JSON data from Azure Storage and will teach you how to transform data in Azure Data Explorer with ADF activities.

Chapter 12, The Best Practices of Working with ADF, will guide you through essential considerations, strategies, and practical recipes that will elevate your ADF projects to new heights of efficiency, security, and scalability.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image