Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Data-Driven Applications with Danfo.js

You're reading from   Building Data-Driven Applications with Danfo.js A practical guide to data analysis and machine learning using JavaScript

Arrow left icon
Product type Paperback
Published in Sep 2021
Publisher Packt
ISBN-13 9781801070850
Length 476 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Stephen Oni Stephen Oni
Author Profile Icon Stephen Oni
Stephen Oni
Rising Odegua Rising Odegua
Author Profile Icon Rising Odegua
Rising Odegua
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: The Basics
2. Chapter 1: An Overview of Modern JavaScript FREE CHAPTER 3. Section 2: Data Analysis and Manipulation with Danfo.js and Dnotebook
4. Chapter 2: Dnotebook - An Interactive Computing Environment for JavaScript 5. Chapter 3: Getting Started with Danfo.js 6. Chapter 4: Data Analysis, Wrangling, and Transformation 7. Chapter 5: Data Visualization with Plotly.js 8. Chapter 6: Data Visualization with Danfo.js 9. Chapter 7: Data Aggregation and Group Operations 10. Section 3: Building Data-Driven Applications
11. Chapter 8: Creating a No-Code Data Analysis/Handling System 12. Chapter 9: Basics of Machine Learning 13. Chapter 10: Introduction to TensorFlow.js 14. Chapter 11: Building a Recommendation System with Danfo.js and TensorFlow.js 15. Chapter 12: Building a Twitter Analysis Dashboard 16. Chapter 13: Appendix: Essential JavaScript Concepts 17. Other Books You May Enjoy

Tensors and basic operations on tensors

A tensor is a basic data structure in tfjs. You can think of tensors as a generalization of vectors, matrices, or high-dimensional arrays. The CoreAPI, which we introduced in the What is TensorFlow.js? section, exposes different functions for creating and working with tensors.

The following screenshot shows a simple comparison between scalars, vectors, and a matrix with a tensor:

Figure 10.5 – Comparison between simple n-dimensional arrays and a tensor

Tip

A matrix is a grid of m x n numbers, where m represents the number of rows and n represents the number of columns. A matrix can be of one or more dimensions, and matrixes of the same shape support direct mathematical operations on each other.

A vector, on the other hand, is a one-dimensional matrix with shape (1, 1); that is, it has a single row and column—for example, [2, 3], [3, 1, 4].

We mentioned earlier that a tensor is more of a generalized...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image