Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Interpretable Machine Learning with Python

You're reading from   Interpretable Machine Learning with Python Build explainable, fair, and robust high-performance models with hands-on, real-world examples

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803235424
Length 606 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Serg Masís Serg Masís
Author Profile Icon Serg Masís
Serg Masís
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Interpretation, Interpretability, and Explainability; and Why Does It All Matter? 2. Key Concepts of Interpretability FREE CHAPTER 3. Interpretation Challenges 4. Global Model-Agnostic Interpretation Methods 5. Local Model-Agnostic Interpretation Methods 6. Anchors and Counterfactual Explanations 7. Visualizing Convolutional Neural Networks 8. Interpreting NLP Transformers 9. Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis 10. Feature Selection and Engineering for Interpretability 11. Bias Mitigation and Causal Inference Methods 12. Monotonic Constraints and Model Tuning for Interpretability 13. Adversarial Robustness 14. What’s Next for Machine Learning Interpretability? 15. Other Books You May Enjoy
16. Index

Learning about evasion attacks

There are six broad categories of adversarial attacks:

  • Evasion: designing an input that can cause a model to make an incorrect prediction, especially when it wouldn’t fool a human observer. It can either be targeted or untargeted, depending on the attacker’s intention to fool the model into misclassifying a specific class (targeted) or, rather, misclassifying any class (untargeted). The attack methods can be white-box if the attacker has full access to the model and its training dataset, or black-box with only inference access. Gray-box sits in the middle. Black-box is always model-agnostic, whereas white and gray-box methods might be.
  • Poisoning: injecting faulty training data or parameters into a model can come in many forms, depending on the attacker’s capabilities and access. For instance, for systems with user-generated data, the attacker may be capable of adding faulty data or labels. If they have more access...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image