Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

You're reading from   Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization Create user-kernel interfaces, work with peripheral I/O, and handle hardware interrupts

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781801079518
Length 452 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: Character Device Driver Basics
2. Writing a Simple misc Character Device Driver FREE CHAPTER 3. User-Kernel Communication Pathways 4. Working with Hardware I/O Memory 5. Handling Hardware Interrupts 6. Working with Kernel Timers, Threads, and Workqueues 7. Section 2: Delving Deeper
8. Kernel Synchronization - Part 1 9. Kernel Synchronization - Part 2 10. Other Books You May Enjoy

Using spinlocks – a quick summary

Let's quickly summarize spinlocks:

  • Simplest, lowest overhead: Use the non-irq spinlock primitives, spin_lock()/spin_unlock(), when protecting critical sections in the process context (there's either no interrupts to deal with or there are interrupts, but we do not race with them at all; in effect, use this when interrupts don't come into play or don't matter).
  • Medium overhead: Use the irq-disabling (as well as kernel preemption disabling) versions, spin_lock_irq() / spin_unlock_irq(), when interrupts are in play and do matter (the process and interrupt contexts can "race"; that is, they share global data).
  • Strongest (relatively), high overhead: This is the safest way to use a spinlock. It does the same as the medium overhead, except it performs a save-and-restore on the interrupt mask via the spin_lock_irqsave() / spin_unlock_irqrestore() pair, so as to guarantee that the...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image