Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with R

You're reading from   Mastering Machine Learning with R Advanced machine learning techniques for building smart applications with R 3.5

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher
ISBN-13 9781789618006
Length 354 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Cory Lesmeister Cory Lesmeister
Author Profile Icon Cory Lesmeister
Cory Lesmeister
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Preparing and Understanding Data 2. Linear Regression FREE CHAPTER 3. Logistic Regression 4. Advanced Feature Selection in Linear Models 5. K-Nearest Neighbors and Support Vector Machines 6. Tree-Based Classification 7. Neural Networks and Deep Learning 8. Creating Ensembles and Multiclass Methods 9. Cluster Analysis 10. Principal Component Analysis 11. Association Analysis 12. Time Series and Causality 13. Text Mining 14. Creating a Package 15. Other Books You May Enjoy

Summary

In this chapter, we reviewed two classification techniques: KNN and SVM. The goal was to discover how these techniques work and ascertain the differences between them, by building and comparing models on a common dataset. KNN involved both unweighted and weighted nearest neighbor algorithms, and for SVM, only a linear model was developed, which outperformed all other models.

We examined how to use Recursive Feature Elimination to find an optimal set of features for both methods. We used the extremely versatile caret package to train the models. We expanded our exploration of model performance using a confusion matrix, and the relevant statistics that one can derive from the matrix. We'll now use tree-based classifiers, which are very powerful and very popular.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image