Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering  with Python

You're reading from   Machine Learning Engineering with Python Manage the lifecycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781837631964
Length 462 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to ML Engineering 2. The Machine Learning Development Process FREE CHAPTER 3. From Model to Model Factory 4. Packaging Up 5. Deployment Patterns and Tools 6. Scaling Up 7. Deep Learning, Generative AI, and LLMOps 8. Building an Example ML Microservice 9. Building an Extract, Transform, Machine Learning Use Case 10. Other Books You May Enjoy
11. Index

Training at scale

When we introduced Ray in Chapter 6, Scaling Up, we mentioned use cases where the data or processing time requirements were such that using a very scalable parallel computing framework made sense. What was not made explicit is that sometimes these requirements come from the fact that we actually want to train many models, not just one model on a large amount of data or one model more quickly. This is what we will do here.

The retail forecasting example we described in Chapter 1, Introduction to ML Engineering uses a data set with several different retail stores in it. Rather than creating one model that could have a store number or identifier as a feature, a better strategy would perhaps be to train a forecasting model for each individual store. This is likely to give better accuracy as the features of the data at the store level which may give some predictive power will not be averaged out by the model looking at a combination of all the stores together. This...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image