Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV with Python By Example

You're reading from   OpenCV with Python By Example Build real-world computer vision applications and develop cool demos using OpenCV for Python

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781785283932
Length 296 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Applying Geometric Transformations to Images FREE CHAPTER 2. Detecting Edges and Applying Image Filters 3. Cartoonizing an Image 4. Detecting and Tracking Different Body Parts 5. Extracting Features from an Image 6. Creating a Panoramic Image 7. Seam Carving 8. Detecting Shapes and Segmenting an Image 9. Object Tracking 10. Object Recognition 11. Stereo Vision and 3D Reconstruction 12. Augmented Reality Index

Image warping

Let's have some more fun with the images and see what else we can achieve. Projective transformations are pretty flexible, but they still impose some restrictions on how we can transform the points. What if we want to do something completely random? We need more control, right? As it so happens, we can do that as well. We just need to create our own mapping, and it's not that difficult. Following are a few effects you can achieve with image warping:

Image warping

Here is the code to create these effects:

import cv2
import numpy as np
import math

img = cv2.imread('images/input.jpg', cv2.IMREAD_GRAYSCALE)
rows, cols = img.shape

#####################
# Vertical wave

img_output = np.zeros(img.shape, dtype=img.dtype)

for i in range(rows):
    for j in range(cols):
        offset_x = int(25.0 * math.sin(2 * 3.14 * i / 180))
        offset_y = 0
        if j+offset_x < rows:
            img_output[i,j] = img[i,(j+offset_x)%cols]
        else:
            img_output[i,j] = 0

cv2.imshow('Input', img)
cv2.imshow('Vertical wave', img_output)

#####################
# Horizontal wave

img_output = np.zeros(img.shape, dtype=img.dtype)

for i in range(rows):
    for j in range(cols):
        offset_x = 0
        offset_y = int(16.0 * math.sin(2 * 3.14 * j / 150))
        if i+offset_y < rows:
            img_output[i,j] = img[(i+offset_y)%rows,j]
        else:
            img_output[i,j] = 0

cv2.imshow('Horizontal wave', img_output)

#####################
# Both horizontal and vertical 

img_output = np.zeros(img.shape, dtype=img.dtype)

for i in range(rows):
    for j in range(cols):
        offset_x = int(20.0 * math.sin(2 * 3.14 * i / 150))
        offset_y = int(20.0 * math.cos(2 * 3.14 * j / 150))
        if i+offset_y < rows and j+offset_x < cols:
            img_output[i,j] = img[(i+offset_y)%rows,(j+offset_x)%cols]
        else:
            img_output[i,j] = 0

cv2.imshow('Multidirectional wave', img_output)

#####################
# Concave effect

img_output = np.zeros(img.shape, dtype=img.dtype)

for i in range(rows):
    for j in range(cols):
        offset_x = int(128.0 * math.sin(2 * 3.14 * i / (2*cols)))
        offset_y = 0
        if j+offset_x < cols:
            img_output[i,j] = img[i,(j+offset_x)%cols]
        else:
            img_output[i,j] = 0

cv2.imshow('Concave', img_output)

cv2.waitKey()
You have been reading a chapter from
OpenCV with Python By Example
Published in: Sep 2015
Publisher: Packt
ISBN-13: 9781785283932
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image