Equipped with all the technical knowledge about Q-learning, deep neural networks, and DQN, we can finally put it to work and start to warm up the GPU. In this section, we will apply DQN to an Atari environment, Pong. We have chosen Pong rather than all the other Atari environments because it's simpler to solve and thus requires less time, computational power, and memory. That being said, if you have a decent GPU available, you can apply the same exact configuration to almost all the other Atari games (some may require a little bit of fine-tuning). For the same reason, we adopted a lighter configuration compared to the original DQN paper, both in terms of the capacity of the function approximator (that is, fewer weights) and hyperparameters such as a smaller buffer size. This does not compromise the results rather on Pong but might degrade the performance...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia