Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning, Second Edition

You're reading from   Scala for Machine Learning, Second Edition Build systems for data processing, machine learning, and deep learning

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787122383
Length 740 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Getting Started 2. Data Pipelines FREE CHAPTER 3. Data Preprocessing 4. Unsupervised Learning 5. Dimension Reduction 6. Naïve Bayes Classifiers 7. Sequential Data Models 8. Monte Carlo Inference 9. Regression and Regularization 10. Multilayer Perceptron 11. Deep Learning 12. Kernel Models and SVM 13. Evolutionary Computing 14. Multiarmed Bandits 15. Reinforcement Learning 16. Parallelism in Scala and Akka 17. Apache Spark MLlib A. Basic Concepts B. References Index

Thompson sampling

Thompson sampling is a simple strategy, introduced 80 years ago, that has received renewed attention in recent years. It is wildly used in advertising displays, marketing surveys, and financial analysis. Thompson sampling is also a Bayesian strategy, known as probability matching: The probability of selecting the arm n is the probability that n is the arm with the maximum reward [14:4].

The strategy can be summarized as:

  • Assign a uniform distribution for each arm, prior to the selection
  • Select arm n with a posterior probability that increases with the probability that n is optimal (probability matching)

Bandit context

So far, we have discussed K-armed bandits that do not maintain a state or context. It is assumed that all the arms are identical and only parameterized by their mean reward (successes and failures in the case of Bernoulli bandits). However, real-world applications, such as product recommendations or advertising targeting, require arms (a product or advertising...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image