Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn LLVM 17

You're reading from   Learn LLVM 17 A beginner's guide to learning LLVM compiler tools and core libraries with C++

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781837631346
Length 416 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Kai Nacke Kai Nacke
Author Profile Icon Kai Nacke
Kai Nacke
Amy Kwan Amy Kwan
Author Profile Icon Amy Kwan
Amy Kwan
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: The Basics of Compiler Construction with LLVM
2. Chapter 1: Installing LLVM FREE CHAPTER 3. Chapter 2: The Structure of a Compiler 4. Part 2: From Source to Machine Code Generation
5. Chapter 3: Turning the Source File into an Abstract Syntax Tree 6. Chapter 4: Basics of IR Code Generation 7. Chapter 5: IR Generation for High-Level Language Constructs 8. Chapter 6: Advanced IR Generation 9. Chapter 7: Optimizing IR 10. Part 3: Taking LLVM to the Next Level
11. Chapter 8: The TableGen Language 12. Chapter 9: JIT Compilation 13. Chapter 10: Debugging Using LLVM Tools 14. Part 4: Roll Your Own Backend
15. Chapter 11: The Target Description 16. Chapter 12: Instruction Selection 17. Chapter 13: Beyond Instruction Selection 18. Index 19. Other Books You May Enjoy

Global instruction selection

Instruction selection via the selection DAG produces fast code, but it takes time to do so. The speed of the compiler is often critical for developers, who want to quickly try out the changes they’ve made. Usually, the compiler should be very fast at optimization level 0, but it can take more time with increased optimization levels. However, constructing the selection DAG costs so much time that this approach does not scale as required. The first solution was to create another instruction selection algorithm called FastISel, which is fast but does not generate good code. It also does not share code with the selection DAG implementation, which is an obvious problem. Because of this, not all targets support FastISel.

The selection DAG approach does not scale because it is a large, monolithic algorithm. If we can avoid creating a new data structure such as the selection DAG, then we should be able to perform the instruction selection using small...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image