Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative AI with Python and TensorFlow 2

You're reading from   Generative AI with Python and TensorFlow 2 Create images, text, and music with VAEs, GANs, LSTMs, Transformer models

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781800200883
Length 488 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Joseph Babcock Joseph Babcock
Author Profile Icon Joseph Babcock
Joseph Babcock
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. An Introduction to Generative AI: "Drawing" Data from Models 2. Setting Up a TensorFlow Lab FREE CHAPTER 3. Building Blocks of Deep Neural Networks 4. Teaching Networks to Generate Digits 5. Painting Pictures with Neural Networks Using VAEs 6. Image Generation with GANs 7. Style Transfer with GANs 8. Deepfakes with GANs 9. The Rise of Methods for Text Generation 10. NLP 2.0: Using Transformers to Generate Text 11. Composing Music with Generative Models 12. Play Video Games with Generative AI: GAIL 13. Emerging Applications in Generative AI 14. Other Books You May Enjoy
15. Index

The variational objective

We previously covered several examples of how images can be compressed into numerical vectors using neural networks. This section will introduce the elements that allow us to create effective encodings to sample new images from a space of random numerical vectors, which are principally efficient inference algorithms and appropriate objective functions. Let's start by quantifying more rigorously what makes such an encoding "good" and allows us to recreate images well. We will need to maximize the posterior:

A problem occurs when the probability of x is extremely high dimensional, which, as you saw, can occur in even simple data such as binary MNIST digits, where we have 2^ (number of pixels) possible configurations that we would need to integrate over (in a mathematical sense of integrating over a probability distribution) to get a measure of the probability of an individual image; in other words, the density p(x) is intractable...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image