Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Amazon SageMaker Cookbook

You're reading from   Machine Learning with Amazon SageMaker Cookbook 80 proven recipes for data scientists and developers to perform machine learning experiments and deployments

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800567030
Length 762 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joshua Arvin Lat Joshua Arvin Lat
Author Profile Icon Joshua Arvin Lat
Joshua Arvin Lat
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Getting Started with Machine Learning Using Amazon SageMaker 2. Chapter 2: Building and Using Your Own Algorithm Container Image FREE CHAPTER 3. Chapter 3: Using Machine Learning and Deep Learning Frameworks with Amazon SageMaker 4. Chapter 4: Preparing, Processing, and Analyzing the Data 5. Chapter 5: Effectively Managing Machine Learning Experiments 6. Chapter 6: Automated Machine Learning in Amazon SageMaker 7. Chapter 7: Working with SageMaker Feature Store, SageMaker Clarify, and SageMaker Model Monitor 8. Chapter 8: Solving NLP, Image Classification, and Time-Series Forecasting Problems with Built-in Algorithms 9. Chapter 9: Managing Machine Learning Workflows and Deployments 10. Other Books You May Enjoy

Setting up A/B testing on multiple models with production variants

When dealing with production deployments, note that multiple models may be deployed and tested at the same time. This helps data scientists and machine learning engineers compare the performance of models when dealing with data that these models have not seen before. One of the standard ways to manage and test multiple models in production is through the use of A/B testing in inference endpoints. What's A/B testing? It is an experiment that involves randomly selecting a model from a list of deployed models to perform predictions. It helps identify the better (or best) performing model in production before completely replacing a deployed model.

In this recipe, we will deploy two pre-trained XGBoost models within a single endpoint using the multi-model endpoint support of SageMaker. We will configure and set up this endpoint to allow A/B testing of the pre-trained models that have been deployed in this endpoint...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image