In this chapter, the goal was to discuss how important the element of time is in the field of machine learning and analytics, to identify the common traps when analyzing the time series, and to demonstrate the techniques and methods to work around these traps. We explored both the univariate and bivariate time series analysis for global temperature anomalies and human carbon dioxide emissions. Additionally, we looked at Granger causality to determine whether we can say, statistically speaking, that atmospheric CO2 levels cause surface temperature anomalies. We discovered that the p-values are higher than 0.05 but less than 0.10 for Granger causality from CO2 to temperature. It does show that Granger causality is an effective tool in investigating causality in machine learning problems. In the next chapter, we'll shift gears and take a look at how to apply learning...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia