Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Reinforcement Learning

You're reading from   Python Reinforcement Learning Solve complex real-world problems by mastering reinforcement learning algorithms using OpenAI Gym and TensorFlow

Arrow left icon
Product type Course
Published in Apr 2019
Publisher Packt
ISBN-13 9781838649777
Length 496 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Yang Wenzhuo Yang Wenzhuo
Author Profile Icon Yang Wenzhuo
Yang Wenzhuo
Sean Saito Sean Saito
Author Profile Icon Sean Saito
Sean Saito
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Rajalingappaa Shanmugamani Rajalingappaa Shanmugamani
Author Profile Icon Rajalingappaa Shanmugamani
Rajalingappaa Shanmugamani
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Title Page
About Packt
Contributors
Preface
1. Introduction to Reinforcement Learning 2. Getting Started with OpenAI and TensorFlow FREE CHAPTER 3. The Markov Decision Process and Dynamic Programming 4. Gaming with Monte Carlo Methods 5. Temporal Difference Learning 6. Multi-Armed Bandit Problem 7. Playing Atari Games 8. Atari Games with Deep Q Network 9. Playing Doom with a Deep Recurrent Q Network 10. The Asynchronous Advantage Actor Critic Network 11. Policy Gradients and Optimization 12. Balancing CartPole 13. Simulating Control Tasks 14. Building Virtual Worlds in Minecraft 15. Learning to Play Go 16. Creating a Chatbot 17. Generating a Deep Learning Image Classifier 18. Predicting Future Stock Prices 19. Capstone Project - Car Racing Using DQN 20. Looking Ahead 1. Assessments 2. Other Books You May Enjoy Index

Double DQN


Deep Q learning is pretty cool, right? It has generalized its learning to play any Atari game. But the problem with DQN is that it tends to overestimate Q values. This is because of the max operator in the Q learning equation. The max operator uses the same value for both selecting and evaluating an action. What do I mean by that? Let's suppose we are in a states and we have five actionsa1toa5. Let's saya3is the best action. When we estimate Q values for all these actions in the states, the estimated Q values will have some noise and differ from the actual value. Due to this noise, actiona2will get a higher value than the optimal actiona3. Now, if we select the best action as the one that has maximum value, we will end up selecting a suboptimal actiona2 instead of optimal actiona3.

We can solve this problem by having two separate Q functions, each learning independently. One Q function is used to select an action and the other Q function is used to evaluate an action. We can implement...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image