Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Software Architecture with C++

You're reading from   Software Architecture with C++ Design modern systems using effective architecture concepts, design patterns, and techniques with C++20

Arrow left icon
Product type Paperback
Published in Apr 2021
Publisher Packt
ISBN-13 9781838554590
Length 540 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Adrian Ostrowski Adrian Ostrowski
Author Profile Icon Adrian Ostrowski
Adrian Ostrowski
Piotr Gaczkowski Piotr Gaczkowski
Author Profile Icon Piotr Gaczkowski
Piotr Gaczkowski
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Concepts and Components of Software Architecture
2. Importance of Software Architecture and Principles of Great Design FREE CHAPTER 3. Architectural Styles 4. Functional and Nonfunctional Requirements 5. Section 2: The Design and Development of C++ Software
6. Architectural and System Design 7. Leveraging C++ Language Features 8. Design Patterns and C++ 9. Building and Packaging 10. Section 3: Architectural Quality Attributes
11. Writing Testable Code 12. Continuous Integration and Continuous Deployment 13. Security in Code and Deployment 14. Performance 15. Section 4: Cloud-Native Design Principles
16. Service-Oriented Architecture 17. Designing Microservices 18. Containers 19. Cloud-Native Design 20. Assessments 21. About Packt 22. Other Books You May Enjoy Appendix A

Liskov substitution principle

In essence, the Liskov Substitution Principle (LSP) states that if a function works with a pointer or reference to a base object, it must also work with a pointer or reference to any of its derived objects. This rule is sometimes broken because the techniques we apply in source code do not always work in real-world abstractions.

A famous example is a square and a rectangle. Mathematically speaking, the former is a specialization of the latter, so there's an "is a" relationship from one to the other. This tempts us to create a Square class that inherits from the Rectangle class. So, we could end up with code like the following:

class Rectangle {
public:
virtual ~Rectangle() = default;
virtual double area() { return width_ * height_; }
virtual void setWidth(double width) { width_ = width; }
virtual void setHeight(double height) { height_ = height; }
private:
double width_;
double height_;
};

class Square : public Rectangle {
public:
double area() override;
void setWidth(double width) override;
void setHeight(double height) override;
};

How should we implement the members of the Square class? If we want to follow the LSP and save the users of such classes from surprises, we can't: our square would stop being a square if we called setWidth. We can either stop having a square (not expressible using the preceding code) or modify the height as well, thus making the square look different than a rectangle.

If your code violates the LSP, it's likely that you're using an incorrect abstraction. In our case, Square shouldn't inherit from Rectangle after all. A better approach could be making the two implement a GeometricFigure interface.

Since we are on the topic of interfaces, let's move on to the next item, which is also related to them.

You have been reading a chapter from
Software Architecture with C++
Published in: Apr 2021
Publisher: Packt
ISBN-13: 9781838554590
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image