Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
A Practical Guide to Quantum Machine Learning and Quantum Optimization

You're reading from   A Practical Guide to Quantum Machine Learning and Quantum Optimization Hands-on Approach to Modern Quantum Algorithms

Arrow left icon
Product type Paperback
Published in Mar 2023
Publisher Packt
ISBN-13 9781804613832
Length 680 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Elías F. Combarro Fernández-Combarro Álvarez Elías F. Combarro Fernández-Combarro Álvarez
Author Profile Icon Elías F. Combarro Fernández-Combarro Álvarez
Elías F. Combarro Fernández-Combarro Álvarez
Samuel González Castillo Samuel González Castillo
Author Profile Icon Samuel González Castillo
Samuel González Castillo
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Part I: I, for One, Welcome our New Quantum Overlords
2. Chapter 1: Foundations of Quantum Computing FREE CHAPTER 3. Chapter 2: The Tools of the Trade in Quantum Computing 4. Part II: When Time is Gold: Tools for Quantum Optimization
5. Chapter 3: Working with Quadratic Unconstrained Binary Optimization Problems 6. Chapter 4: Adiabatic Quantum Computing and Quantum Annealing 7. Chapter 5: QAOA: Quantum Approximate Optimization Algorithm 8. Chapter 6: GAS: Grover Adaptive Search 9. Chapter 7: VQE: Variational Quantum Eigensolver 10. Part III: A Match Made in Heaven: Quantum Machine Learning
11. Chapter 8: What Is Quantum Machine Learning? 12. Chapter 9: Quantum Support Vector Machines 13. Chapter 10: Quantum Neural Networks 14. Chapter 11: The Best of Both Worlds: Hybrid Architectures 15. Chapter 12: Quantum Generative Adversarial Networks 16. Part IV: Afterword and Appendices
17. Chapter 13: Afterword: The Future of Quantum Computing
18. Assessments 19. Bibliography
20. Index
21. Other Books You May Enjoy Appendix A: Complex Numbers
1. Appendix B: Basic Linear Algebra 2. Appendix C: Computational Complexity 3. Appendix D: Installing the Tools 4. Appendix E: Production Notes

Summary

In this chapter, we first learned what support vector machines are, and how they can be trained to solve binary classification problems. We began by considering vanilla vector machines, and then we introduced the kernel trick — which opened up a world of possibilities! In particular, we saw how QSVMs are nothing more than a support vector machine with a quantum kernel.

From there on, we learned how quantum kernels actually work and how to implement them. We explored the essential role of feature maps, and discussed a few of the most well-known ones.

Finally, we learned how to implement, train, and use quantum support vector machines with PennyLane and Qiskit. In addition, we were able to very easily run QSVMs on real hardware thanks to Qiskit’s interface to IBM Quantum.

And that pretty much covers how QSVMs can help you can identify wines — or solve any other classification task — like an expert, all while happily ignoring what the ”alkalinity...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image