Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Embedded Programming with Modern C++ Cookbook

You're reading from   Embedded Programming with Modern C++ Cookbook Practical recipes to help you build robust and secure embedded applications on Linux

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838821043
Length 412 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Igor Viarheichyk Igor Viarheichyk
Author Profile Icon Igor Viarheichyk
Igor Viarheichyk
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Fundamentals of Embedded Systems 2. Setting Up the Environment FREE CHAPTER 3. Working with Different Architectures 4. Handling Interrupts 5. Debugging, Logging, and Profiling 6. Memory Management 7. Multithreading and Synchronization 8. Communication and Serialization 9. Peripherals 10. Reducing Power Consumption 11. Time Points and Intervals 12. Error Handling and Fault Tolerance 13. Guidelines for Real-Time Systems 14. Guidelines for Safety-Critical Systems 15. Microcontroller Programming 16. Other Books You May Enjoy

Logging and diagnostics

Logging and diagnostics are an important aspect of any embedded project.

In many cases, using an interactive debugger is not possible or practical. Hardware state can change in a few milliseconds. After a program stops on a breakpoint, a developer does not have enough time to analyze it. Collecting detailed log data and using tools for their analysis and visualization is a better approach for high-performance, multithreaded, time-sensitive embedded systems.

Since in most cases resources are limited, developers often have to make tradeoffs. On the one hand, they need to collect as much data as possible to identify the root cause of failure—whether it is the software or hardware, the status of the hardware components at the time of the failure, and the accurate timing of the hardware and software events handled by the system. On the other hand, the space available for the log is limited, and each time writing the log affects the overall performance.

The solution is buffering log data locally on a device and sending it to a remote system for detailed analysis.

This approach works fine for the development of embedded software. However, the diagnostics of the deployed systems require more sophisticated techniques.

Many embedded systems work offline and do not provide convenient access to internal logs. Developers need to design and implement other ways of diagnostics and reporting carefully. If a system does not have a display, LED indicators or beeps are often used to encode various error conditions. They are sufficient for giving information about the failure category but in most cases cannot provide the necessary details to nail it down to the root cause.

Embedded devices have dedicated diagnostics modes that are used to test the hardware components. After powering up, virtually any device or appliance performs a Power-On Self-Test (POST), which runs quick tests of the hardware. These tests are supposed to be fast and do not cover all testing scenarios. That is why many devices have hidden service modes that can be activated by developers or field engineers to perform more thorough tests.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image