-
The main use is dimensionality reduction, to force the network to learn important features, making it possible to reconstruct the original input. The downside of AE is that the latent space represented by the hidden layer is not continuous, making it hard to sample since the decoder won't be able to make sense of some of the points.
- The reconstruction loss penalizes the network when it creates outputs that are different from the input.
- In VAE, the latent space is continuous and smooth, making it possible to sample any point of the space and interpolate between two points. It is achieved by having the latent variables follow a probability distribution of P(z), often a Gaussian distribution.
- The KL divergence measures how much two probability distributions diverge from each other. When combined with the reconstruction loss...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia