Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Building Machine Learning Systems with Python
Building Machine Learning Systems with Python

Building Machine Learning Systems with Python: Explore machine learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow , Third Edition

Arrow left icon
Profile Icon Willi Richert Profile Icon Pedro Coelho Profile Icon Brucher
Arrow right icon
$19.99 per month
Full star icon Half star icon Empty star icon Empty star icon Empty star icon 1.7 (3 Ratings)
Paperback Jul 2018 406 pages 3rd Edition
eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m
Arrow left icon
Profile Icon Willi Richert Profile Icon Pedro Coelho Profile Icon Brucher
Arrow right icon
$19.99 per month
Full star icon Half star icon Empty star icon Empty star icon Empty star icon 1.7 (3 Ratings)
Paperback Jul 2018 406 pages 3rd Edition
eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m
eBook
$24.99 $35.99
Paperback
$43.99
Subscription
Free Trial
Renews at $19.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Building Machine Learning Systems with Python

Classifying with Real-World Examples

The topic of this chapter is classification. In this setting of machine learning, you provide the system with examples of different classes of objects that you are interested in and then ask it to generalize to new examples where the class is not known. This may seem abstract, but you have probably already used this form of machine learning as a consumer, even if you were not aware of it: your email system will likely have the ability to automatically detect spam. That is, the system will analyze all incoming emails and mark them as either spam or not spam. Often, you, the end user, will be able to manually tag emails as spam or not, in order to improve its spam detection ability. This is exactly what we mean by classification: you provide examples of spam and and non-spam emails and then use an automated system to classify incoming emails...

The Iris dataset

The Iris dataset is a classic dataset from the 1930s; it is one of the first modern examples of statistical classification.

The dataset is a collection of morphological measurements of several iris flowers. These measurements will enable us to distinguish multiple species of flower. Today, species are identified by their DNA fingerprints, but in the 1930s, DNA's role in genetics had not yet been discovered.

The following four attributes of each plant were measured:

  • Sepal length
  • Sepal width
  • Petal length
  • Petal width

In general, we call the individual numeric measurements we use to describe our data features. These features can be directly measured or computed from intermediate data.

This dataset has four features. Additionally, for each plant, the species is recorded. The problem we want to solve is: "given these examples, if we see a new flower out...

Evaluation – holding out data and cross-validation

The model discussed in the previous section is a simple model; it achieves 96.0 percent accuracy of the whole data. However, this evaluation is almost certainly overly optimistic. We used the data to define what the tree would look like, and then we used the same data to evaluate the model. Of course, the model will perform well on this dataset as it was optimized to perform well on it. The reasoning is circular.

What we really want to do is estimate the ability of the model to generalize to new instances. We should measure its performance in instances that the algorithm has not seen at training. Therefore, we are going to do a more rigorous evaluation and use held-out data. To do this, we are going to break up the data into two groups: in one group, we'll train the model, and in the other, we'll test the one...

How to measure and compare classifiers

How do we decide which classifier is best? Rarely do we find the perfect solution, the model that never makes any mistakes, so we need to decide which one to use. We used accuracy before, but sometimes it will be better to optimize so that the model makes fewer errors of a specific kind. For example, in spam filtering, it may be worse to delete a good email than to erroneously let a bad email through. In that case, we may want to choose a model that is conservative in throwing out emails rather than the one that just makes the fewest mistakes overall. We can discuss these issues in terms of gain (which we want to maximize) or loss (which we want to minimize). They are equivalent, but sometimes one is more convenient than the other and you will read articles discussing minimizing the loss or maximizing the gain.

In a medical setting, false...

A more complex dataset and the nearest-neighbor classifier

We will now look at a slightly more complex dataset. This will include the introduction of a new classification algorithm and a few other ideas.

Learning about the seeds dataset

We now look at another agricultural dataset, which is still small, but already too large to plot exhaustively on a page as we did with the Iris dataset. This dataset consists of measurements of wheat seeds. There are seven features that are present, which are as follows:

  • Area A
  • Perimeter P
  • Compactness C = 4πA/P²
  • Length of kernel
  • Width of kernel
  • Asymmetry coefficient
  • Length of kernel groove

There are three classes corresponding to three wheat varieties: Canadian, Koma, and Rosa...

Which classifier to use

So far, we have looked at two classical classifiers, namely the decision tree and the nearest neighbor classifier. Scikit-learn supports many more, but it does not support everything that has ever been proposed in academic literature. Thus, one may be left wondering: which one should I use? Is it even important to learn about all of them?

In many cases, knowledge of your dataset may help you decide which classifier has a structure that best matches your problem. However, there is a very good study by Manuel Fernández-Delgado and his colleagues titled, Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? This is a very readable, very practically-oriented study, where the authors conclude that there is actually one classifier which is very likely to be the best (or close to the best) for a majority of problems, namely random...

Summary

Classification means generalizing from examples to build a model that assigns objects to a predefined class (that is, a rule that can automatically be applied to new, unclassified objects). It is one of the fundamental tools in machine learning and we will look at many more examples of this in the forthcoming chapters.

In a way, this was a very abstract and theoretical chapter, as we introduced generic concepts with simple examples. We went over a few operations with the Iris dataset. This is a small dataset. However, it has the advantage that we were able to plot all the data and see what we were doing in detail. This is something that will be lost when we move on to problems with many dimensions and many thousands of examples. The insight we gained here will still be valid.

You also learned that the training error is a misleading, over-optimistic estimate of how well...

Left arrow icon Right arrow icon

Key benefits

  • Use scikit-learn and TensorFlow to train your machine learning models
  • Implement popular supervised and unsupervised machine learning algorithms in Python
  • Discover best practices for building production-grade machine learning systems from scratch

Description

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.

Who is this book for?

This book is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. Prior knowledge of Python programming is expected.

What you will learn

  • Build a classification system that can be applied to text, images, and sound
  • Solve regression-related problems using scikit-learn and TensorFlow
  • Recommend products to users based on their previous purchases
  • Explore different methods of applying deep neural networks to your data
  • Understand recent advances in computer vision and natural language processing (NLP)
  • Deploy Amazon Web Services (AWS) to run data models on the cloud

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 31, 2018
Length: 406 pages
Edition : 3rd
Language : English
ISBN-13 : 9781788623223
Category :
Languages :
Concepts :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 31, 2018
Length: 406 pages
Edition : 3rd
Language : English
ISBN-13 : 9781788623223
Category :
Languages :
Concepts :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just $5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total $ 142.97
Building Machine Learning Systems with Python
$43.99
Machine Learning Algorithms
$54.99
Python Machine Learning, Second Edition
$43.99
Total $ 142.97 Stars icon
Banner background image

Table of Contents

16 Chapters
Getting Started with Python Machine Learning Chevron down icon Chevron up icon
Classifying with Real-World Examples Chevron down icon Chevron up icon
Regression Chevron down icon Chevron up icon
Classification I – Detecting Poor Answers Chevron down icon Chevron up icon
Dimensionality Reduction Chevron down icon Chevron up icon
Clustering – Finding Related Posts Chevron down icon Chevron up icon
Recommendations Chevron down icon Chevron up icon
Artificial Neural Networks and Deep Learning Chevron down icon Chevron up icon
Classification II – Sentiment Analysis Chevron down icon Chevron up icon
Topic Modeling Chevron down icon Chevron up icon
Classification III – Music Genre Classification Chevron down icon Chevron up icon
Computer Vision Chevron down icon Chevron up icon
Reinforcement Learning Chevron down icon Chevron up icon
Bigger Data Chevron down icon Chevron up icon
Where to Learn More About Machine Learning Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Half star icon Empty star icon Empty star icon Empty star icon 1.7
(3 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 66.7%
1 star 33.3%
dhoelzer Oct 11, 2019
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
The first chapter or two provides a very nice introduction to the topic... but that rapidly declines. You quickly realize that the examples printed in the book are both incomplete and buggy and that the versions in the Github repository vary very significantly from the discussion in the book. By the time you deal with decision trees (really, the first exercise where you are predicting things), the author simply stops providing examples, simply saying that they are in the repo, and leaving it to the reader to figure them out and try to figure out why they work (or don't work).Additionally, early sections of the book require you to have read later sections of the book, creating a circular dependency in the book itself! Not recommended.
Amazon Verified review Amazon
Extell Farve Dec 27, 2021
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
like the title says, these books come through like they dont have an editor behind them and the code segments feel like they were never even tested, and the numerical discrepancies for some statistics despite following the book's directions to a T are frustrating
Amazon Verified review Amazon
PJ Sep 12, 2019
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
I bought the kindle edition and it's been 9 days since I purchased it. I can't even return this book now and it's an absolute pain to read through. Most of the codes work but there are mistakes in some of the codes. I worked through Chapter 3 and I found at least two such cases. Sample codes are provided through github in the form of jupyter notebook and chapter 3 codes don't run as provided. Outputs for that notebook were not included, so I doubt the author even ran it once before publishing the codes. It's not hard to fix the mistakes in the code but the provided codes should work.For kindle edition, yhat is printed as ybar. That's not a big deal but it is misleading if you don't have a background in stats or other related fields.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.