- Prototypical networks are simple, efficient, and one of the most popularly used few-shot learning algorithms. The basic idea of the prototypical network is to create a prototypical representation of each class and classify a query point (new point) based on the distance between the class prototype and the query point.
- We compute embeddings for each of the data points to learn the features.
- Once we learn the embeddings of each data point, we take the mean embeddings of data points in each class and form the class prototype. So, a class prototype is basically the mean embeddings of data points in a class.
- In a Gaussian prototypical network, along with generating embeddings for the data points, we add a confidence region around them, which is characterized by a Gaussian covariance matrix. Having...




















































