Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering OpenCV with Practical Computer Vision Projects

You're reading from   Mastering OpenCV with Practical Computer Vision Projects This is the definitive advanced tutorial for OpenCV, designed for those with basic C++ skills. The computer vision projects are divided into easily assimilated chapters with an emphasis on practical involvement for an easier learning curve.

Arrow left icon
Product type Paperback
Published in Dec 2012
Publisher Packt
ISBN-13 9781849517829
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (15) Chapters Close

Mastering OpenCV with Practical Computer Vision Projects
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Cartoonifier and Skin Changer for Android 2. Marker-based Augmented Reality on iPhone or iPad FREE CHAPTER 3. Marker-less Augmented Reality 4. Exploring Structure from Motion Using OpenCV 5. Number Plate Recognition Using SVM and Neural Networks 6. Non-rigid Face Tracking 7. 3D Head Pose Estimation Using AAM and POSIT 8. Face Recognition using Eigenfaces or Fisherfaces Index

POSIT


After we have found the 2D position of our landmark points, we can derive the 3D pose of our model using the POSIT. The pose P of a 3D object is defined as the 3 x 3 rotation matrix R and the 3D translation vector T, hence P is equal to [ R | T ].

Note

Most of this section is based on the OpenCV POSIT tutorial by Javier Barandiaran.

As the name implies, POSIT uses the Pose from Orthography and Scaling (POS) algorithm in several iterations, so it is an acronym for POS with Iterations. The hypothesis for its working is that we can detect and match in the image four or more non-coplanar feature points of the object and that we know their relative geometry on the object.

The main idea of the algorithm is that we can find a good approximation to the object pose, supposing that all the model points are in the same plane, since their depths are not very different from one another if compared to the distance from the camera to a face. After the initial pose is obtained, the rotation matrix and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image