Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering OpenCV with Practical Computer Vision Projects

You're reading from   Mastering OpenCV with Practical Computer Vision Projects This is the definitive advanced tutorial for OpenCV, designed for those with basic C++ skills. The computer vision projects are divided into easily assimilated chapters with an emphasis on practical involvement for an easier learning curve.

Arrow left icon
Product type Paperback
Published in Dec 2012
Publisher Packt
ISBN-13 9781849517829
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (15) Chapters Close

Mastering OpenCV with Practical Computer Vision Projects
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
1. Cartoonifier and Skin Changer for Android 2. Marker-based Augmented Reality on iPhone or iPad FREE CHAPTER 3. Marker-less Augmented Reality 4. Exploring Structure from Motion Using OpenCV 5. Number Plate Recognition Using SVM and Neural Networks 6. Non-rigid Face Tracking 7. 3D Head Pose Estimation Using AAM and POSIT 8. Face Recognition using Eigenfaces or Fisherfaces Index

Application infrastructure


So far, we've learned how to detect a pattern and estimate its 3D position with regards to the camera. Now it's time to show how to put these algorithms into a real application. So our goal for this section is to show how to use OpenCV to capture a video from a web camera and create the visualization context for 3D rendering.

As our goal is to show how to use key features of marker-less AR, we will create a simple command-line application that will be capable of detecting arbitrary pattern images either in a video sequence or in still images.

To hold all image-processing logic and intermediate data, we introduce the ARPipeline class. It's a root object that holds all subcomponents necessary for augmented reality and performs all processing routines on the input frames. The following is a UML diagram of ARPipeline and its subcomponents:

It consists of:

  • The camera-calibration object

  • An Instance of the pattern-detector object

  • A trained pattern object

  • Intermediate data of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image