The need for information security
Software and IT are everywhere, and their adoption is increasing at an ever-increasing speed. Software programming is prevalent in the fields of entertainment, health, education, food, travel, auto, communication, media, and every other field we can think of. As the number of software programs and their features increase, so does the number of software bugs and flaws. A security flaw, glitch, or weakness found in software code that could be exploited by an attacker (threat source) is called a software vulnerability. The number of such vulnerabilities has been increasing drastically year by year, as seen in the following figure.
Figure 1.1 – Vulnerabilities trend over the past decades
Threat actors take advantage of such vulnerabilities and cause disruption to the confidentiality, integrity, or availability of the protected system. In certain vulnerabilities, the threat actor makes use of various exploits to deliver, install, and/or execute a malicious program on the system. Such malicious code is known as malware.
Malware comes in a variety of forms – viruses, worms, backdoors, trojans, adware, spyware, ransomware, and so on – each with its own characteristics. This malware aims to steal, damage, and/or destroy vulnerable systems – exfiltrating sensitive data or encrypting files and/or disks to make them unusable.
The damage caused by ransomware alone is shown in the following chart:
Figure 1.2 – Increasing cost of ransomware-related damage
Typical cyberattacks consist of a set of common phases or stages. Lockheed Martin has created a model called the Cyber Kill Chain to encapsulate these stages (https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html). The stages are as follows:
- Reconnaissance: This is the phase in which the adversary identifies the target’s possible vulnerabilities and weak points. This may involve active scanning of the target network, passive information gathering, social engineering, gathering information from the internet and/or social networks, and so on. This step provides the adversary with sufficient information to proceed with the attack – such as which IP addresses are accessible, what ports are open, what applications are running, and details of the vulnerabilities on each.
- Weaponization: In this stage, the attacker creates a payload (weapon) that exploits the discovered vulnerability and plants malware on the victim’s machine.
- Delivery: This is the stage when the attacker delivers the prepared payload, for example, an infected document to the target. A typical delivery mechanism is a phishing email containing a malicious link or an infected PDF document.
- Exploitation: In this stage, the target machine is compromised by the exploit delivered in the previous stage. When the exploit code is executed, the attacker accomplishes their objective, such as remote control of the target machine. Subsequently, having gained a foothold on the victim’s machine, the attacker proceeds to the next phases, such as maintaining persistence and exfiltrating data.
- Installation: In the installation phase, various types of malwares are installed on the target machine – ransomware, backdoors, or trojans – based on the plan of the attacker for their purposes.
- Command and control: Once the malware is installed on the target machine, it typically contacts a command and control server. This may be to get additional instructions or commands to be executed on the target machine.
- Action: In this stage, the malware acts on the target as per the commands or instructions from the attacker. This may involve installing additional malware, exfiltrating sensitive data and system information back to the attacker-controlled server, or even performing denial-of-service attacks on any specified targets.
These are the typical stages of a cyberattack. From a security point of view, the earlier the attack is detected, the better. If the defense mechanisms in place can detect and stop an attack at the delivery stage, any compromise can be prevented.
In the next section, let us look at a strategy that aims to ensure the highest chance of a successful defense against attack attempts.