Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Markov Models with Python

You're reading from   Hands-On Markov Models with Python Implement probabilistic models for learning complex data sequences using the Python ecosystem

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781788625449
Length 178 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Ankur Ankan Ankur Ankan
Author Profile Icon Ankur Ankan
Ankur Ankan
Abinash Panda Abinash Panda
Author Profile Icon Abinash Panda
Abinash Panda
Arrow right icon
View More author details
Toc

Markov processes

A stochastic process is called a Markov process if the state of the random variable at the next instance of time depends only on the outcome of the random variable at the current time. In simplistic mathematical terms, for a stochastic process, S = {R1, R2, . . ., Rn} = {R}t=1, . . ., n, to be a Markov process, it must satisfy the following condition:

According to the previous condition, the probability distribution for any variable at any given instance in a Markov process is a conditional distribution, which is conditioned only on the random variable at the last time instance. This property of a system, such that the future states of the system depend only on the current state of the system, is also known as the Markov property. Systems satisfying the Markov property are also known as memoryless systems since they don't need to remember the previous states to compute the distribution of the next state, or, in other words, the next state depends only on the current state of the system.

A very common example used to explain the Markov process is a drunk man walking along a street. We consider that, since the man is drunk, he can either take a step backward, a step forward, or stay in his current position, which is given by some distribution of these, let's say [0.4, 0.4, 0.2]. Now, given the position of the man at any given instance in time, his position at the next instance depends only on his current position and the parameters of the system (his step size and the probability distribution of possible actions). Therefore, this is an example of a Markov process.

In the previous example, let's assume that the drunk man takes an action (steps forward/backward or stays in his position) at fixed intervals of time and his step size is always the same. With these considerations, the Markov process in our example has a discrete state space. Also, since the man takes steps after fixed intervals of time, we can think of it as a discrete time. But Markov processes don't need to have discrete state space or discrete time intervals. Considering discrete and continuous time as well as discrete and continuous state space, we can categorize Markov processes into four main categories:

  • Discrete time and discrete state space
  • Discrete time and continuous state space
  • Continuous time and discrete state space
  • Continuous time and continuous state space

We will discuss each of these categories of Markov process in more detail in the following sections.

You have been reading a chapter from
Hands-On Markov Models with Python
Published in: Sep 2018
Publisher: Packt
ISBN-13: 9781788625449
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image