Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Markov Models with Python

You're reading from   Hands-On Markov Models with Python Implement probabilistic models for learning complex data sequences using the Python ecosystem

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781788625449
Length 178 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (2):
Arrow left icon
Ankur Ankan Ankur Ankan
Author Profile Icon Ankur Ankan
Ankur Ankan
Abinash Panda Abinash Panda
Author Profile Icon Abinash Panda
Abinash Panda
Arrow right icon
View More author details
Toc

What this book covers

Chapter 1, Introduction to Markov Process, starts with a discussion of basic probability theory, and then introduces Markov chains. The chapter also talks about the different types of Markov chain classifying based on continuous or discrete states and time intervals.

Chapter 2, Hidden Markov Models, builds on the concept of Markov processes and DBNs to introduce the concepts of the HMM.

Chapter 3, State Inference – Predicting the States, introduces algorithms that can be used to predict the states of a defined HMM. The chapter introduces the Forward algorithm, the backward algorithm, the forward-backward algorithm, and the Viterbi algorithm.

Chapter 4, Parameter Inference Using Maximum Likelihood, discusses the basics of maximum likelihood learning. The chapter then moves on to applying maximum likelihood learning in the case of HMMs and introduces the Viterbi learning algorithm and Baum-Welch algorithm.

Chapter 5, Parameter Inference Using Bayesian Approach, starts by introducing the basic concepts of Bayesian learning. The chapter then applies these concepts in the case of HMMs and talks about the different approximation methods used for learning using the Bayesian method.

Chapter 6, Time Series Predicting, discusses the application of HMMs in the case of time series data. The chapter takes the example of the variation of stock prices and tries to model it using an HMM.

Chapter 7, Natural Language Processing, discusses the application of HMMs in the field of speech recognition. The chapter discusses two main areas of application: part-of-speech tagging and speech recognition.

Chapter 8, 2D HMM for Image Processing, introduces the concept of 2D HMMs and discusses their application in the field of image processing.

Chapter 9, Markov Decision Process, introduces the basic concepts of reinforcement learning and then talks about Markov decision process and introduces the Bellman equation to solve them.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image