It is easy to discover patterns by visualizing data with two or three dimensions. A high-dimensional dataset cannot be represented graphically, but we can still gain some insights into its structure by reducing it to two or three principal components. Collected in 1936, Fisher's Iris dataset is a collection of fifty samples from each of three species of Iris: Iris setosa, Iris virginica, and Iris versicolor. The explanatory variables are measurements of the length and width of the petals and sepals of the flowers. The Iris dataset is commonly used to test classification models, and is included with scikit-learn. Let's reduce the iris dataset's four dimensions so that we can visualize it in two dimensions. First we load the built-in iris dataset and instantiate a PCA estimator. The PCA class takes the number of principal...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia