We defined machine learning as the design and study of systems that learn from experience to improve their performance of a task as measured by some metric. K-means is an unsupervised learning algorithm; there are no labels or ground truth to compare with the clusters. However, we can still evaluate the performance of the algorithm using intrinsic measures. We have already discussed measuring the distortions of clusters. In this section, we will discuss another performance measure for clustering called silhouette coefficient. The silhouette coefficient is a measure of compactness and separation of clusters. It increases as the quality of clusters increases; it is large for compact clusters that are far from each other and small for large, overlapping clusters. The silhouette coefficient is calculated per instance; for a set of instances, it is calculated as...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia