Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning with scikit-learn

You're reading from   Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher
ISBN-13 9781788299879
Length 254 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gavin Hackeling Gavin Hackeling
Author Profile Icon Gavin Hackeling
Gavin Hackeling
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Fundamentals of Machine Learning FREE CHAPTER 2. Simple Linear Regression 3. Classification and Regression with k-Nearest Neighbors 4. Feature Extraction 5. From Simple Linear Regression to Multiple Linear Regression 6. From Linear Regression to Logistic Regression 7. Naive Bayes 8. Nonlinear Classification and Regression with Decision Trees 9. From Decision Trees to Random Forests and Other Ensemble Methods 10. The Perceptron 11. From the Perceptron to Support Vector Machines 12. From the Perceptron to Artificial Neural Networks 13. K-means 14. Dimensionality Reduction with Principal Component Analysis

An introduction to scikit-learn

Since its release in 2007, scikit-learn has become one of the most popular machine learning libraries. scikit-learn provides algorithms for machine learning tasks including classification, regression, dimensionality reduction, and clustering. It also provides modules for pre-processing data, extracting features, optimizing hyperparameters, and evaluating models.

scikit-learn is built on the popular Python libraries NumPy and SciPy. NumPy extends Python to support efficient operations on large arrays and multi-dimensional matrices. SciPy provides modules for scientific computing. The visualization library matplotlib is often used in conjunction with scikit-learn.

scikit-learn is popular for academic research because its API is well-documented, easy-to-use, and versatile. Developers can use scikit-learn to experiment with different algorithms by changing only a few lines of code. scikit-learn wraps some popular implementations of machine learning algorithms, such as LIBSVM and LIBLINEAR. Other Python libraries, including NLTK, include wrappers for scikit-learn. scikit-learn also includes a variety of datasets, allowing developers to focus on algorithms rather than obtaining and cleaning data.

Licensed under the permissive BSD license, scikit-learn can be used in commercial applications without restrictions. Many of scikit-learn's algorithms are fast and scalable to all but massive datasets. Finally, scikit-learn is noted for its reliability; much of the library is covered by automated tests.

You have been reading a chapter from
Mastering Machine Learning with scikit-learn - Second Edition
Published in: Jul 2017
Publisher:
ISBN-13: 9781788299879
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image