Let's consider having a dataset X ∈ ℜM × N (M N-dimensional samples) drawn from a multivariate data generating process pdata. The goal of the mean shift algorithm applied to a clustering problem is to find the regions where pdata is maximum and associate the samples contained in a surrounding subregion to the same cluster. As pdata is a Probability Density Function (PDF), it is reasonable for representing it as the sum of regular PDFs (for example, Gaussians) characterized by a small subset of parameters, such as mean and variance. In this way, a sample can be supposed to be generated by the PDF with the highest probability. We are going to discuss this process also in Chapter 5, Soft Clustering and Gaussian Mixture Models, and Chapter 6, Anomaly Detection. For our purposes, it's helpful to restructure the problem as an iterative procedure...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia