In this chapter, we introduced the concept of GANs, discussing an example of a DCGAN. Such models have the ability to learn a data generating process through the use of two neural networks involved in a minimax game. The generator has to learn how to return samples that are indistinguishable from the others employed during the training process. The discriminator, or critic, has to become smarter and smarter in only assigning high probabilities to valid samples. The adversarial training approach is based on the idea of forcing the generator to win against the discriminator, by learning how to cheat it with synthetic samples with the same properties as the real ones. At the same time, the generator is forced to win against the discriminator by becoming more and more selective. In our examples, we also analyzed an important variant, called WGAN, which can be employed when...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia