Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Deep Learning on Graphs

You're reading from   Applied Deep Learning on Graphs Leverage graph data for business applications using specialized deep learning architectures

Arrow left icon
Product type Paperback
Published in Dec 2024
Publisher Packt
ISBN-13 9781835885963
Length 250 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Lakshya Khandelwal Lakshya Khandelwal
Author Profile Icon Lakshya Khandelwal
Lakshya Khandelwal
Subhajoy Das Subhajoy Das
Author Profile Icon Subhajoy Das
Subhajoy Das
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Part 1: Foundations of Graph Learning
2. Chapter 1: Introduction to Graph Learning FREE CHAPTER 3. Chapter 2: Graph Learning in the Real World 4. Chapter 3: Graph Representation Learning 5. Part 2: Advanced Graph Learning Techniques
6. Chapter 4: Deep Learning Models for Graphs 7. Chapter 5: Graph Deep Learning Challenges 8. Chapter 6: Harnessing Large Language Models for Graph Learning 9. Part 3: Practical Applications and Implementation
10. Chapter 7: Graph Deep Learning in Practice 11. Chapter 8: Graph Deep Learning for Natural Language Processing 12. Chapter 9: Building Recommendation Systems Using Graph Deep Learning 13. Chapter 10: Graph Deep Learning for Computer Vision 14. Part 4: Future Directions
15. Chapter 11: Emerging Applications 16. Chapter 12: The Future of Graph Learning 17. Index 18. Other Books You May Enjoy

Fundamentals of recommendation systems

Recommendation systems, also known as recommender systems, are intelligent algorithms that are designed to predict and suggest items or content that users might find interesting or relevant. These systems analyze patterns in user behavior, preferences, and item characteristics to generate personalized recommendations. The primary purpose of recommendation systems is to enhance the user experience by providing relevant content, increasing user engagement and retention, driving sales and conversions in e-commerce platforms, facilitating content discovery in large item catalogs, and personalizing services across various domains. Recommendation systems play a crucial role in addressing the information overload problem by filtering and prioritizing content based on user preferences and behavior.

Recommendation systems have become an integral part of our digital experiences, influencing our choices in various domains, such as e-commerce, entertainment...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image