Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Applied Deep Learning on Graphs
Applied Deep Learning on Graphs

Applied Deep Learning on Graphs: Leverage graph data for business applications using specialized deep learning architectures

Arrow left icon
Profile Icon Lakshya Khandelwal Profile Icon Subhajoy Das
Arrow right icon
€18.99 per month
eBook Dec 2024 250 pages 1st Edition
eBook
€8.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Lakshya Khandelwal Profile Icon Subhajoy Das
Arrow right icon
€18.99 per month
eBook Dec 2024 250 pages 1st Edition
eBook
€8.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€8.99 €29.99
Paperback
€37.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Applied Deep Learning on Graphs

Introduction to Graph Learning

Graph data is a powerful and intuitive way of expressing information, and several practical scenarios can be better expressed using graph data than tabular approaches. Analyzing graph data has been a topic of study for decades, but it has only recently begun to capture the limelight due to advances in compute capabilities.

In this book, we aim to introduce you to the world of graphs. Here, we’ll begin by discussing what graph data is and the fundamental mathematical terminologies surrounding graphs. Next, we’ll take a small detour and discuss some common graph algorithms and their applications in graph data analytics. We’ll extend our discussion on graph data analytics to the requirement of graph deep learning and why it stands as a specialized subdomain compared to applying existing architectures.

In this chapter, we’ll cover the following topics:

  • Do we need graphs?
  • Formalizing graphs
  • Types and properties...

Do we need graphs?

The recent artificial intelligence (AI) revolution is the tip of the iceberg of a megatrend that has been impacting the computing industry for decades now. Over time, computing performance has increased exponentially against power consumed and cost; information storage costs have also decreased exponentially. To put this into perspective, while a terabyte of data can be stored in a disk costing around 100 US dollars in 2024, it would have taken more than a million dollars in the early 1990s!

Using computers and their derivative products, such as software, web applications, games, and multimedia content, has become deeply tied to our normal lifestyle. This dependence led to the need for understanding the behavior of all the interacting entities: humans, computer hardware, software such as web applications, and even organizations as a whole. The end goal was to find ways to make interactions more efficient, which could lead to unprecedented business opportunities...

Formalizing graphs

Graphs are a very popular concept in mathematics. In this domain, a common terminology is well accepted. Let’s take a closer look.

Definition and semantics

With the argument being made for graph representations to be a relevant topic for practical problems, let’s take a moment to define what a graph is. A graph is an abstract concept. Mathematically, it’s generally represented as <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>G</mml:mi><mml:mo>(</mml:mo><mml:mi>V</mml:mi><mml:mo>,</mml:mo><mml:mi>E</mml:mi><mml:mo>)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>G</mml:mi></mml:math> is the graph, which contains a set of vertices, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>V</mml:mi></mml:math>, and a set of edges, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>E</mml:mi></mml:math>. Each element of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>E</mml:mi></mml:math> is a tuple, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo>,</mml:mo><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo>,</mml:mo><mml:mi>V</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>∈</mml:mo><mml:mi>V</mml:mi></mml:math>, and represents a connection between the two vertices. That’s all there is to the mathematical definition; how you choose to apply semantics to this is completely up to you.

In the example mentioned in the previous section, the users of the social media platform were represented by the vertices, and the connection between the two users was represented by the edges. Also, vertices and edges need not be so homogeneous. Consider the graph...

Types and properties of graphs

Several types of graphs have been identified, each with its unique properties, but we’ll focus on the ones that are most popular. Note that these types need not be mutually exclusive, meaning a graph can be labeled as more than one type at a time.

Directed graphs

Graphs are directed when the edges have a one-way relationship between their connecting nodes. There are many scenarios where the relationship that’s represented is unidirectional. In a graph representing a family tree, an edge might represent the relation “is a parent of,” and another might represent the relation “is a pet of.” Such relationships can’t be inverted between the nodes and hold the same meaning.

Bipartite graphs

A bipartite graph is a type of graph whose vertices can be divided into two disjoint sets such that every edge connects a vertex from one set to a vertex in the other set. In other words, there are no edges that...

Graph data structures

How should we feed graph data into computer programs so that we can apply graph-based algorithms to solve problems? This will be addressed in this section. Each representation has its advantages and disadvantages, and we’ll explore them from the perspective of the time complexity of determining whether an edge exists and updating the graph.

Adjacency matrix

The adjacency matrix aims to record the graph structure via a matrix. A matrix, say <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math>, of size <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi><mml:mo>×</mml:mo><mml:mi>v</mml:mi></mml:math> is created (where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi></mml:math> denotes the number of nodes, or mathematically, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>v</mml:mi><mml:mo>=</mml:mo><mml:mo>|</mml:mo><mml:mi>V</mml:mi><mml:mo>|</mml:mo></mml:math>). We start with all entries of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math> being 0. Next, if <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:mi>E</mml:mi></mml:math>, then element <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi><mml:mo>)</mml:mo></mml:math> of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math> is labeled 1. If the graph is undirected, then if <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>)</mml:mo><mml:mo>∈</mml:mo><mml:mi>E</mml:mi></mml:math>, then both elements of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>A</mml:mi></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi><mml:mo>)</mml:mo></mml:math>, and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mo>(</mml:mo><mml:mi>j</mml:mi><mml:mo>,</mml:mo><mml:mi>i</mml:mi><mml:mo>)</mml:mo></mml:math>, are labeled 1.

The time complexity to check whether an edge exists in an adjacency matrix is <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:math> since it just involves checking a particular cell in the matrix. However, adding a new vertex to the graph would be difficult, and depending on the matrix implementation, it might need...

Traditional graph-based solutions

Many computer scientists have etched their names in history by devising elegant solutions to seemingly complex problems involving graphs. However, graphs aren’t just confined to the algorithm books, and graph-based problems are common in the wild. Lots of business problems and scientific research can be boiled down to graph-based problems, on which existing solutions can be implemented to generate the required output. In this section, we’ll talk about the most popular problems in the domain of graphs, a few approaches to solving them, and where these problems are encountered in practical scenarios.

Searching

There are two fundamental approaches when performing a search over a graph: breadth-first and depth-first. Both are means to traverse a graph from a starting point to all nodes that can be reached from the initial node, but the differentiating factor is their approach.

In BFS, the algorithm explores a graph level by level...

The need for representation learning

Here, we’ll introduce a new concept called representation learning for graphs. Let’s use a small analogy to understand what this means. A typical corporate organization has several entities: employees, IT equipment, offices, and so on. All these entities maintain different types of relationships with each other: employees can be related to each other based on organizational hierarchy; one employee may use several pieces of IT equipment; several pieces of equipment, such as servers, can be networked with each other; employees and equipment can report physically or be located in a particular office, respectively; and so on.

A graph, quite rightly, seems like a natural way to represent this information, like this:

Figure 1.8 – A graph showing the different entities in an organization interacting with each other

Figure 1.8 – A graph showing the different entities in an organization interacting with each other

Graphs are very visually intuitive. However, performing algorithmic calculations on graphs...

GNNs and the need for a separate vertical

We won’t dive into the details of what GNNs do or how they differ from other popular neural network architectures in this chapter. Here, we’ll merely attempt to explain why there’s a need to study GNNs separately from other deep learning architectures.

Before talking about the differences, we must discuss the similarities. GNNs are an architecture choice that’s specialized for processing graph data and outputting representations or node embeddings. Similar to how convolutional networks are fundamental for reading pixel data, the set of architectures under GNNs are optimized for reading graph data. GNN-based learning tasks follow the same trajectory as other deep learning solutions: to iteratively optimize the parameters of the model so that a loss function can be minimized. In the case of GNNs, the loss function often tries to capture and preserve meaningful information about the graph structure.

Now, let&...

Summary

In this chapter, we covered the foundational concepts in graph learning and representation. We began with motivating examples of how graph structures naturally capture relationships between entities, making them a powerful data representation. Then, formal definitions of graphs, common graph types, and key properties were discussed. We also looked at popular graph algorithms such as searching, partitioning, and path optimization, along with their real-world use cases.

A key idea presented here was the need for representation learning on graphs. Converting graph data into vector embeddings allows us to leverage the capabilities of machine learning models. Benefits such as scalability, flexibility, and robustness make graph embeddings an enabling technique.

Finally, we justified the need for specialized GNN architectures. Factors such as irregular structure, permutation invariance, and complex operations such as aggregation and pooling necessitate tailored solutions. GNNs...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Explore graph data in real-world systems and leverage graph learning for impactful business results
  • Dive into popular and specialized deep neural architectures like graph convolutional and attention networks
  • Learn how to build scalable and productionizable graph learning solutions
  • Purchase of the print or Kindle book includes a free PDF eBook

Description

With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs). This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You’ll see how graph data structures power today’s interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You’ll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you’ll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision. By the end of this book, you’ll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies.

Who is this book for?

For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.

What you will learn

  • Discover how to extract business value through a graph-centric approach
  • Develop a basic understanding of learning graph attributes using machine learning
  • Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures
  • Understand industry applications of graph deep learning, including recommender systems and NLP
  • Identify and overcome challenges in production such as scalability and interpretability
  • Perform node classification and link prediction using PyTorch Geometric

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 27, 2024
Length: 250 pages
Edition : 1st
Language : English
ISBN-13 : 9781835885970
Category :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 27, 2024
Length: 250 pages
Edition : 1st
Language : English
ISBN-13 : 9781835885970
Category :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
Banner background image

Table of Contents

18 Chapters
Part 1: Foundations of Graph Learning Chevron down icon Chevron up icon
Chapter 1: Introduction to Graph Learning Chevron down icon Chevron up icon
Chapter 2: Graph Learning in the Real World Chevron down icon Chevron up icon
Chapter 3: Graph Representation Learning Chevron down icon Chevron up icon
Part 2: Advanced Graph Learning Techniques Chevron down icon Chevron up icon
Chapter 4: Deep Learning Models for Graphs Chevron down icon Chevron up icon
Chapter 5: Graph Deep Learning Challenges Chevron down icon Chevron up icon
Chapter 6: Harnessing Large Language Models for Graph Learning Chevron down icon Chevron up icon
Part 3: Practical Applications and Implementation Chevron down icon Chevron up icon
Chapter 7: Graph Deep Learning in Practice Chevron down icon Chevron up icon
Chapter 8: Graph Deep Learning for Natural Language Processing Chevron down icon Chevron up icon
Chapter 9: Building Recommendation Systems Using Graph Deep Learning Chevron down icon Chevron up icon
Chapter 10: Graph Deep Learning for Computer Vision Chevron down icon Chevron up icon
Part 4: Future Directions Chevron down icon Chevron up icon
Chapter 11: Emerging Applications Chevron down icon Chevron up icon
Chapter 12: The Future of Graph Learning Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.