Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Causal Inference in R

You're reading from   Causal Inference in R Decipher complex relationships with advanced R techniques for data-driven decision-making

Arrow left icon
Product type Paperback
Published in Nov 2024
Publisher Packt
ISBN-13 9781837639021
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Subhajit Das Subhajit Das
Author Profile Icon Subhajit Das
Subhajit Das
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1:Foundations of Causal Inference
2. Chapter 1: Introducing Causal Inference FREE CHAPTER 3. Chapter 2: Unraveling Confounding and Associations 4. Chapter 3: Initiating R with a Basic Causal Inference Example 5. Part 2: Practical Applications and Core Methods
6. Chapter 4: Constructing Causality Models with Graphs 7. Chapter 5: Navigating Causal Inference through Directed Acyclic Graphs 8. Chapter 6: Employing Propensity Score Techniques 9. Chapter 7: Employing Regression Approaches for Causal Inference 10. Chapter 8: Executing A/B Testing and Controlled Experiments 11. Chapter 9: Implementing Doubly Robust Estimation 12. Part 3: Advanced Topics and Cutting-Edge Methods
13. Chapter 10: Analyzing Instrumental Variables 14. Chapter 11: Investigating Mediation Analysis 15. Chapter 12: Exploring Sensitivity Analysis 16. Chapter 13: Scrutinizing Heterogeneity in Causal Inference 17. Chapter 14: Harnessing Causal Forests and Machine Learning Methods 18. Chapter 15: Implementing Causal Discovery in R 19. Index 20. Other Books You May Enjoy

Causality and a fundamental issue

The goal in this chapter is to clarify and simplify concepts that, though they may seem clear and straightforward in daily conversation, reveal a layer of complexity when expressed mathematically. Our approach is informed by the Neyman-Rubin causal model [1], often referred to as the potential outcomes framework. This framework is not just an academic exercise but also a practical tool to understand how specific actions lead to real-world outcomes.

Imagine you live in a loud/noisy neighborhood and consider moving to a quieter one so you can better focus on your studies. The key question is: does moving to a quieter place actually cause an increase in your concentration?

Consider this: you move and find your concentration improves. But it’s important to question whether this improvement might have happened even if you hadn’t moved. If the answer is yes, then the move itself might not be the main reason for your better focus, challenging...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image