Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Causal Inference in R

You're reading from   Causal Inference in R Decipher complex relationships with advanced R techniques for data-driven decision-making

Arrow left icon
Product type Paperback
Published in Nov 2024
Publisher Packt
ISBN-13 9781837639021
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Subhajit Das Subhajit Das
Author Profile Icon Subhajit Das
Subhajit Das
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1:Foundations of Causal Inference
2. Chapter 1: Introducing Causal Inference FREE CHAPTER 3. Chapter 2: Unraveling Confounding and Associations 4. Chapter 3: Initiating R with a Basic Causal Inference Example 5. Part 2: Practical Applications and Core Methods
6. Chapter 4: Constructing Causality Models with Graphs 7. Chapter 5: Navigating Causal Inference through Directed Acyclic Graphs 8. Chapter 6: Employing Propensity Score Techniques 9. Chapter 7: Employing Regression Approaches for Causal Inference 10. Chapter 8: Executing A/B Testing and Controlled Experiments 11. Chapter 9: Implementing Doubly Robust Estimation 12. Part 3: Advanced Topics and Cutting-Edge Methods
13. Chapter 10: Analyzing Instrumental Variables 14. Chapter 11: Investigating Mediation Analysis 15. Chapter 12: Exploring Sensitivity Analysis 16. Chapter 13: Scrutinizing Heterogeneity in Causal Inference 17. Chapter 14: Harnessing Causal Forests and Machine Learning Methods 18. Chapter 15: Implementing Causal Discovery in R 19. Index 20. Other Books You May Enjoy

Summary

In this chapter, you were introduced to DR estimation, a method that cleverly balances two models – the exposure/treatment model and the outcome model – to ensure our causal inference is on solid ground, even if one of the models decides to go off track. This chapter also looked through R code so that we weren’t just learning but also on an electrifying journey to uncover the truth behind the data. It was all about getting our hands dirty with R, making sense of complex datasets, and ensuring our analysis remained robust, regardless of our challenges.

We walked through the mathematics and practical applications of the DR estimation method, employing R to bring theoretical concepts to life. This discussion transitioned from the basics to more complex techniques, emphasizing the method’s flexibility and resilience. At this point, we’re not just acquainted with DR estimation; we’re empowered to apply it confidently in our analyses....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image